所属成套资源:【期末满分攻略】2022-2023学年人教版八年级数学下册专题讲学案(原卷版+解析版)
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题08 勾股定理之图形折叠模型综合应用(4大类型)(原卷版+解析版) 学案 3 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题09 勾股定理之赵爽弦图模型综合应用(2大类型)(原卷版+解析版) 学案 3 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题11 勾股定理之风吹荷花模型综合应用(2大类型)(原卷版+解析版) 学案 3 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题12 等边三角形中的378和578模型(3大类型)(原卷版+解析版) 学案 2 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题13 勾股定理之蚂蚁行程模型综合应用(3大类型)(原卷版+解析版) 学案 2 次下载
【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题10 勾股定理之大树折断模型综合应用(2大类型)(原卷版+解析版)
展开
这是一份【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题10 勾股定理之大树折断模型综合应用(2大类型)(原卷版+解析版),文件包含专题10勾股定理之大树折断模型综合应用2大类型解析卷docx、专题10勾股定理之大树折断模型综合应用2大类型原卷版docx等2份学案配套教学资源,其中学案共17页, 欢迎下载使用。
专题10 勾股定理之大树折断模型综合应用(2大类型) “风吹树折”问题又称为“折竹抵地”,源自《九章算术》,原文为∶“今有竹高一丈,末折抵地,去本三尺.问折者高几何?”意思是∶一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部 3 尺远,则折断后的竹子高度为多少尺?(1丈=10尺)【模型】如图所示,折断后的两段竹子与地面形成一直角三角形,其中一直角边长三尺,其余两边长度之和为 10尺.【思路】根据勾股定理建立方程,求出折断后的竹子高度为4.55 尺.【解析】设折断后的竹子高度为 x 尺,则被折断的竹子长度为(10—x)尺.由勾股定理得 x2+32=(10—x)2,解得 x= 4.55.答∶折断后竹子的高度是 4.55 尺此模型主要考查勾股定理的运用.在此模型中,已知三角形一条直角边的长度与其余两条边长度之和,即可设所求的一边长度为 x,通过勾股定理建立方程,求出答案. 【典例分析】【典例1】如图,一棵大树在离地面9米高的B处断裂,树顶A落在离树底BC的12米处,则大树断裂之前的高度为( )A.9米 B.15米 C.21米 D.24米【变式1-1】(秋•印江县期末)如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为( )A.10米 B.15米 C.25米 D.30米【变式1-2】(春•江岸区期末)小红在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如图)拉到岸边,花柄正好与水面成60°夹角,测得AB长1m,则荷花处水深OA为( )A.1m B.2m C.3m D.m【典例2】如图,受台风影响,一棵高6m的大树折断,树的顶部落在离树根底部2m处,这棵树折断后有多高? 【变式2-1】(2022秋•辉县市校级期末)如图1,一棵大树在一次强烈的地震中于离地面5米处折断倒下,树顶落在离树根12米处,图2是这棵大树折断的示意图,则这棵大树在折断之前的高是( ) A.20米 B.18米 C.16米 D.15米【变式2-2】(春•凉州区校级月考)池塘中有一朵荷花,它直立在水中,荷花高出水面半尺处长着一朵红莲,一阵风吹来把荷花吹倒在一边,红莲倒在水面位置距荷花生长处水平距离为2尺,则池塘深( )A.3.75尺 B.3.25尺 C.4.25尺 D.3.5尺【夯实基础】1.(2021春•鄯善县期末)如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为 m.2.(秋•渠县校级期末)受台风影响,路边一棵大树在离地面6米处断裂(但未分离),大树顶落在离大树底部8米处,则大树折断之前高有 米.3.受台风影响,一棵高18m的大树折断树顶部落在离树根底部6m处,这棵树折断后的高度为 .4.(春•临海市期末)如图,一棵高为9m的大树折断后,大树顶端恰好落在离底端3m处,则折断处离地面的高度是 m.5.(2020秋•凤翔县期中)如图所示,一棵大树在一次强烈台风中于离地面9米处折断倒下,树顶落在离树根12米处.大树在折断之前高多少? 6.(2019春•北流市期中)如图,一棵大树在一次强台风中在距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,则这棵大树在折断前的高度为多少? 7.(秋•泌阳县期末)如图,小明的家D距离大树底部A是9米,一次台风过后,大树在离地面3米的点B处折断,顶端着地处点C在AD上,又知BC恰好等于CD.(1)请用直尺和圆规作出点C的位置(保留作图痕迹,不必写作法);(2)求大树折断前高度. 8.(秋•绍兴期中)受台风“云娜”影响,一千年古樟在离地面6米处断裂,大树顶部落在离大树底部8米处,损失惨重,问大树折断之前有多高? 9.(2021春•永吉县期中)一棵高12m的大树被折断,折断处A距地面4.5m(点B为大树顶端着地处).在大树倒下的方向停着一辆小轿车,小轿车距大树底部C的距离为6.5m,倒下的大树会砸到小轿车吗?通过计算说明理由. 10.(2022春•威县期末)如图,在一次地震中,一棵垂直于地面且高度为16米的大树被折断,树的顶部落在离树根8米处,即BC=8,求这棵树在离地面多高处被折断(即求AC的长度)? 11.(2021春•安陆市期中)强台风过境时,斜坡上一棵6m高的大树被刮断,已知斜坡中α=30°,大树顶端A与底部C之间为2m,求这棵大树的折断处与底部的距离BC? 12.(2020秋•新城区校级月考)如图,一棵大树在离地面3米,5米两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6米处,求大树折断前的高度.【能力提升】13.(2022秋•南阳期末)如图,在△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若动点P从点A出发,以1cm/s的速度沿折线A﹣C﹣B﹣A运动.设运动时间为t(t>0)s.当点P运动到恰好到点A和点B的距离相等的位置时,t的值为 .
相关学案
这是一份【期末满分攻略】2022-2023学年北师大版八年级数学下册讲学案-专题04 勾股定理之图形折叠模型,共25页。学案主要包含了新方法解读,典例分析,变式1-1,变式1-2,变式1-3,夯实基础,能力提升等内容,欢迎下载使用。
这是一份【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题14 勾股定理之垂美四边形模型综合应用(3大类型)(原卷版+解析版),文件包含专题14勾股定理之垂美四边形模型综合应用3大类型解析版docx、专题14勾股定理之垂美四边形模型综合应用3大类型原卷版docx等2份学案配套教学资源,其中学案共41页, 欢迎下载使用。
这是一份【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题13 勾股定理之蚂蚁行程模型综合应用(3大类型)(原卷版+解析版),文件包含专题13勾股定理之蚂蚁行程模型综合应用3大类型解析版docx、专题13勾股定理之蚂蚁行程模型综合应用3大类型原卷版docx等2份学案配套教学资源,其中学案共19页, 欢迎下载使用。