所属成套资源:【期末满分攻略】2022-2023学年人教版八年级数学下册专题讲学案(原卷版+解析版)
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题16 正方形中“十字架”模型(原卷版+解析版) 学案 4 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题17 正方形中“对角互补”模型(原卷版+解析版) 学案 4 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题19 正方形中“半角”模型(原卷版+解析版) 学案 3 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题20 特殊四边形中的面积转换(原卷版+解析版) 学案 3 次下载
- 【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题21 特殊平行四边形的性质与判定综合(原卷版+解析版) 学案 3 次下载
【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题18 正方形中“外角平分线”模型(原卷版+解析版)
展开
这是一份【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题18 正方形中“外角平分线”模型(原卷版+解析版),文件包含专题18正方形中“外角平分线”模型解析版docx、专题18正方形中“外角平分线”模型原卷版docx等2份学案配套教学资源,其中学案共33页, 欢迎下载使用。
专题18 正方形中“外角平分线”模型 【模型归纳】 【典例1】(春•双鸭山期末)如图,四边形ABCD是正方形,E是BC边所在直线上的点,∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F.(1)当点E在线段BC中点时(如图1),易证AE=EF,不需证明;(2)当点E在线段BC上(如图2)或在线段BC延长线上(如图3)时,(1)中的结论是否仍然成立?请写出你的猜想,并选择图2或图3的一种结论给予证明. 【变式1-1】(春•海淀区校级期中)如图,四边形ABCD是正方形,点E是边BC上一点,且∠AEF=90°,且EF交正方形外角平分线CF于点F.若正方形边长是8,EC=2,则FC的长为 . 【变式1-2】(2021春•柳南区校级期末)如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形ABCD的外角∠DCG的平分线CF于点F.(1)如图2,取AB的中点H,连接HE,求证:AE=EF.(2)如图3,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变结论“AE=EF”仍然成立吗?如果正确,写出证明过程:如果不正确,请说明理由. 【变式1-3】(春•西乡塘区期末)如图所示,BD是正方形ABCD的对角线,BC=4,点H是AD边上的一动点,连接CH,作HE⊥CH,使得HE=CH,连接AE.(1)求证:∠DCH=∠AHE;(2)如图2,过点E作EF∥AD交对角线BD于点F,试探究:在点H的运动过程中,EF的长度是否为一个定值;如果是,请求出EF的长度. 1.(2022秋•佛山期末)如图,在边长为5的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF.若DF=2,则BE的长为( )A. B. C. D.22.(2021春•钦州期末)如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,已知正方形边长为4,则EF的长为 .3.(2022春•长寿区期末)已知:四边形ABCD是正方形.(1)如图1,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.求证:AE=EF;(2)如图2,若把(1)中“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余的条件不变,试证明AE=EF仍然成立. 4.(2022春•济源期中)在一次课题学习活动中,老师提出了如下问题:如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.请你探究AE与EF存在怎样的数量关系,并证明你的结论正确.经过探究,小明得出的结论是AE=EF.而要证明结论AE=EF,就需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,小明想到的方法是如图2,取AB的中点M,连接EM,证明△AEM≌△EFC.从而得到AE=EF.请你参考小明的方法解决下列问题:(1)如图3,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,证明结论AE=EF仍然成立.(2)如图4,若把条件“点E是边BC的中点”改为:“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否还成立?若成立,请完成证明过程,若不成立,请说明理由. 5.(2021春•天元区期中)如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.(1)请证明AE=EF请证明.(2)若把条件“点E是边BC的中点”改为“点E是线段BC上任意一点”,其余条件不变,那么(1)中的结论AE=EF是否成立?若成立,请给与证明;若不成立,请你说明理由. 6.(2020春•江川区期中)如图1,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.(1)求证:AE=EF;(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由. 7.(2020春•南岗区期末)如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F.(1)求证:AE=EF;(2)若S△CEF=2,求EF的长. 8.(2019春•望花区期末)已知四边形ABCD是正方形,点E是边BC上的任意一点,AE⊥EF,且直线EF交正方形外角的平分线CF于点F.(1)如图1,求证:AE=EF;(2)如图2,当AB=2,点E是边BC的中点时,请直接写出FC的长. 9.(春•广州校级期中)正方形ABCD边长为8,E、F分别是BC、CD边上的动点,且AE⊥EF.(1)如图①,延长EF交∠BCD的外角平分线于M点,求证:AE=EM.(2)如图②,若点E是BC的中点,求CF的长及△AEF的面积? 10.(2021春•莆田期末)如图1,在正方形ABCD中,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)若点E是BC边上的中点,求证:AE=EF;(2)如图2,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变,那么结论“AE=EF”是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,若点E是BC边上的任意点一,在AB边上是否存在点M,使得四边形DMEF是平行四边形?若存在,请给予证明;若不存在,请说明理由.
相关学案
这是一份【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题18 角平分线四大模型在三角形中的应用(原卷版+解析版),文件包含期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题18角平分线四大模型在三角形中的应用解析版docx、期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题18角平分线四大模型在三角形中的应用原卷版docx等2份学案配套教学资源,其中学案共47页, 欢迎下载使用。
这是一份【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题19 正方形中“半角”模型(原卷版+解析版),文件包含专题19正方形中“半角”模型解析版docx、专题19正方形中“半角”模型原卷版docx等2份学案配套教学资源,其中学案共41页, 欢迎下载使用。
这是一份【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题17 正方形中“对角互补”模型(原卷版+解析版),文件包含专题17正方形中“对角互补”模型解析版docx、专题17正方形中“对角互补”模型原卷版docx等2份学案配套教学资源,其中学案共33页, 欢迎下载使用。