终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题22 特殊平行四边形中的折叠问题(原卷版+解析版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题22 特殊平行四边形中的折叠问题(原卷版).docx
    • 解析
      专题22 特殊平行四边形中的折叠问题(解析版).docx
    专题22 特殊平行四边形中的折叠问题(原卷版)第1页
    专题22 特殊平行四边形中的折叠问题(原卷版)第2页
    专题22 特殊平行四边形中的折叠问题(解析版)第1页
    专题22 特殊平行四边形中的折叠问题(解析版)第2页
    专题22 特殊平行四边形中的折叠问题(解析版)第3页
    还剩3页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题22 特殊平行四边形中的折叠问题(原卷版+解析版)

    展开

    这是一份【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题22 特殊平行四边形中的折叠问题(原卷版+解析版),文件包含专题22特殊平行四边形中的折叠问题解析版docx、专题22特殊平行四边形中的折叠问题原卷版docx等2份学案配套教学资源,其中学案共18页, 欢迎下载使用。
    专题22  特殊平行四边形中的折叠问题    在折叠问题中,原图形与折叠后图形中所隐含的相等线段与相等角常常是解决问题的关键,注意翻折变换的性质的灵活运用,折叠前后,重叠部分是全等形,另外注意勾股定理等知识在求折叠图形的线段长度中的适当运用。  典例12021•徐州)如图,将一张长方形纸片ABCD沿EF折叠,使 CA两点重合,点D落在点G处.已知AB4BC81)求证:△AEF是等腰三角形;2)求线段FD的长.答案】(1    2FD3【解答】(1)证明:由折叠性质可知,∠AEF=∠CEF由矩形性质可得ADBC∴∠AFE=∠CEF∴∠AEF=∠AFEAEAF故△AEF为等腰三角形.2)解:由折叠可得AECE,设CExAEBEBCCE8x∵∠B90°,RtABE中,有AB2+BE2AE242+8x2x2,解得:x5由(1)结论可得AFAE5FDADAFBCAF853变式1-12021•大连)如图,在菱形ABCD中,∠BAD60°,点E在边BC上,将△ABE沿直线AE翻折180°,得到△ABE,点B的对应点是点B′.若AB′⊥BDBE2,则BB′的长是      答案】2【解答】解:∵菱形ABCDABADADBC∵∠BAD60°,∴∠ABC120°,AB′⊥BD∴∠BAB'∵将△ABE沿直线AE翻折180°,得到△ABEBEB'EABAB'∴∠ABB'∴∠EBB'=∠ABE﹣∠ABB'120°﹣75°=45°,∴∠EB'B=∠EBB'45°,∴∠BEB'90°,RtBEB'中,由勾股定理得:BB'故答案为:2变式1-22021•江西)如图,将ABCD沿对角线AC翻折,点B落在点E处,CEAD于点F,若∠B80°,∠ACE2ECDFCaFDb,则ABCD的周长为     答案】4a+2b【解答】解:∵∠B80°,四边形ABCD为平行四边形.∴∠D80°.由折叠可知∠ACB=∠ACEADBC∴∠DAC=∠ACB∴∠ACE=∠DAC∴△AFC为等腰三角形.AFFCa设∠ECDx,则∠ACE2x∴∠DAC2x在△ADC中,由三角形内角和定理可知,2x+2x+x+80°=180°,解得:x20°.∴由三角形外角定理可得∠DFC4x80°,故△DFC为等腰三角形.DCFCaADAF+FDa+b故平行四边形ABCD的周长为2DC+AD)=2a+a+b)=4a+2b故答案为:4a+2b典例22021春•雨花区月考)小西在学完第十八章《平行四边形》之后,研究了新人教版八年级下册数学教材第64页的数学活动1.其内容如下:如果我们身旁没有量角器或三角尺,又需要作60°,30°,15°等大小的角,可以采用下面的方法(如图1):(1)对折矩形纸片ABCD,使ADBC重合,得到折痕EF,把纸片展平.2)再次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到了线段BN小雅在小西研究的基础上,再次动手操作(如图2):3)将MN延长交BC于点G,将△BMG沿MG折叠,点B刚好落在AD边上点H处,连接GH,把纸片再次展平.请根据小西和小雅的探究,完成下列问题:直接写出BEBN的数量关系:      求∠ABM的角度大小;求证:四边形BGHM是菱形.答案】3BEBN  ABM30  四边形BGHM是菱形【解答】解:(3∵对折矩形纸片ABCD,使ADBC重合,得到折痕EFBEAB∵再次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到了线段BNABBNBEBN故答案为:BEBN解:∵由折叠的性质得:∠BEN=∠AEN90°,BEBN∴∠BNE30°,∴∠ABN60°,由折叠的性质得:∠ABMABN30°;证明:由得∠ABM30°,∵四边形ABCD是矩形,∴∠A=∠ABC90°,∴∠AMB=∠BMN60°,∠MBG60°,∴△BMG是等边三角形,BMBG由折叠得BMMHBGGHBMMHBGGH∴四边形BGHM是菱形.变式2-12019•黔东南州一模)如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长为(  )A B3 C D答案】C【解答】解:∵将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,EFDEABAD6cm,∠A90°∵点EAB的中点,AEBE3cmRtAEF中,EF2AF2+AE2∴(6AF2AF2+9AF故选:C变式2-2(鹿城区校级三模)如图,将矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH3EF4,则边AD的长是(  )A2 B3 C4.8 D5答案】D【解答】解:∵∠HEM=∠AEH,∠BEF=∠FEM∴∠HEF=∠HEM+FEM×180°=90°,同理可得:∠EHG=∠HGF=∠EFG90°,∴四边形EFGH为矩形.ADAH+HDHM+MFHFHF5AD5故选:D  1.2021•黔西南州)如图,在矩形纸片ABCD中,AB6BC9MBC上的点,且CM3,将矩形纸片ABCD沿过点M的直线折叠,使点D落在AB上的点P处,点C落在点C′处,折痕为MN,则线段AN的长是   答案】4【解答】解:连接PM,如图AB6BC9CM3BMBCCM936由折叠性质得,CDPC′=6,∠C=∠PCM=∠PBM90°,CMCM3RtPBMRtMCP中,RtPBMRtMCPHL),PBCM3PAABPB633ANx,则ND9xPNRtAPN中,AN2+AP2PN2x2+32=(9x2解得x4AN的长是4故答案为42.2021•苏州)如图,在平行四边形ABCD中,将△ABC沿着AC所在的直线折叠得到△ABCBCAD于点E,连接BD,若∠B60°,∠ACB45°,AC,则BD的长是(  )A1 B C D答案】B【解答】解:∵四边形ABCD是平行四边形,ADBCABCD,∠ADC60°,∴∠CAE=∠ACB45°,∵将△ABC沿AC翻折至△ABC∴∠ACB′=∠ACB45°,∠ABC=∠B60°,∴∠AEC180°﹣∠CAE﹣∠ACB′=90°,AECEAC∵∠AEC90°,∠ABC60°,∠ADC60°,∴∠BAD30°,∠DCE30°,BEDE1BD故选:B3.2021•牡丹江)如图,正方形ABCD的边长为3EBC边上一点,BE1.将正方形沿GF折叠,使点A恰好与点E重合,连接AFEFGE,则四边形AGEF的面积为(  )A2 B2 C6 D5答案】D【解答】解:设DFmAGn∵正方形的边长为3CF3mBG3n由折叠可得,AFEFAGGERtADF中,AF2DF2+DA2AF2m2+9RtEFC中,EF2EC2+CF2BE1EC2EF24+3m2m2+94+3m2mRtBEG中,GE2BG2+BE2n2=(3n2+1nSGEB×1×(3)=SADF××31SCEF×2×(3)=S四边形AGEFS正方形ABCDSGEBSADFSCEF915故选:D4.(2021•黔东南州模拟)如图,矩形纸片ABCD中,已知AD8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF3,则AB的长为  答案】6【解答】解:∵四边形ABCD是矩形,AD8BC8∵△AEF是△AEB翻折而成,BEEF3ABAF,△CEF是直角三角形,CE835RtCEF中,CF4ABxRtABC中,AC2AB2+BC2,即(x+42x2+82解得x6,则AB6故答案为:65.(2020•广东)如图,矩形ABCD中,ABAD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AECD于点F,连接DE1)求证:△ADE≌△CED2)求证:△DEF是等腰三角形.答案】(1)略   2)略【解答】证明:(1)∵四边形ABCD是矩形,ADBCABCD由折叠的性质可得:BCCEABAEADCEAECD在△ADE和△CED中,∴△ADE≌△CEDSSS).2)由(1)得△ADE≌△CED∴∠DEA=∠EDC,即∠DEF=∠EDFEFDF∴△DEF是等腰三角形.   6.(2020•兴化市模拟)如图,现有一张矩形纸片ABCDAB4BC8,点MN分别在矩形的边ADBC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN丁点Q,连接CM1)求证:PMPN2)当PA重合时,求MN的值;3)若△PQM的面积为S,求S的取值范围.答案】1) 略  2MN2QN2   34S5【解答】(1)证明:如图1中,∵四边形ABCD是矩形,PMCN∴∠PMN=∠MNC∵∠MNC=∠PNM∴∠PMN=∠PNMPMPN2)解:点P与点A重合时,如图2中,BNx,则ANNC8xRtABN中,AB2+BN2AN242+x2=(8x2解得x3CN835AC4CQAC2QNMN2QN2 3)解:当MN过点D时,如图3所示,此时,CN最短,四边形CMPN的面积最小,则S最小为SS菱形CMPN×4×44P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为S×5×454S5 

    相关学案

    【期末满分攻略】2022-2023学年浙教版八年级数学下册讲学案-专题12 特殊平行四边形中的折叠问题(三大类型):

    这是一份【期末满分攻略】2022-2023学年浙教版八年级数学下册讲学案-专题12 特殊平行四边形中的折叠问题(三大类型),文件包含期末满分攻略2022-2023学年浙教版八年级数学下册讲学案-专题12特殊平行四边形中的折叠问题三大类型解析版docx、期末满分攻略2022-2023学年浙教版八年级数学下册讲学案-专题12特殊平行四边形中的折叠问题三大类型原卷版docx等2份学案配套教学资源,其中学案共46页, 欢迎下载使用。

    【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题32 一次函数中菱形存在问题综合应用(原卷版+解析版):

    这是一份【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题32 一次函数中菱形存在问题综合应用(原卷版+解析版),文件包含专题32一次函数中菱形存在问题综合应用解析版docx、专题32一次函数中菱形存在问题综合应用原卷版docx等2份学案配套教学资源,其中学案共23页, 欢迎下载使用。

    【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题24 四边形中动点问题(原卷版+解析版):

    这是一份【期末满分攻略】2022-2023学年人教版八年级数学下册讲学案-专题24 四边形中动点问题(原卷版+解析版),文件包含专题24四边形中动点问题解析版docx、专题24四边形中动点问题原卷版docx等2份学案配套教学资源,其中学案共21页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map