- 【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题15 “一线三等角”模型及其变形的应用(原卷版+解析版) 学案 11 次下载
- 【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题16 全等三角形中手拉手模型综合应用(原卷版+解析版) 学案 11 次下载
- 【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题17 轴对称之将军饮马模型(原卷版+解析版) 学案 18 次下载
- 【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-期末冲刺测试卷01(原卷版+解析版) 学案 33 次下载
- 【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-期末冲刺测试卷02(原卷版+解析版) 学案 28 次下载
【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题18 角平分线四大模型在三角形中的应用(原卷版+解析版)
展开专题18 角平分线四大模型在三角形中的应用
模型1 角平分线上的点向两边作垂线
如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点B。
结论:PB=PA。
【模型分析】
利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。
模型2 截取构造对称全等
如图,P是∠MON的平分线上一点,点A是射线OM上任意一点,在ON上截取OB=OA,连接PB。
结论:△OPB≌△OPA。
【模型分析】
利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。
模型3 角平分线+垂线构造等腰三角形
如图,P是∠MO的平分线上一点,AP⊥OP于P点,延长AP于点B。
结论:△AOB是等腰三角形。
【模型分析】
构造此模型可以利用等腰三角形的“三线合一”,也可以得到两个全等的直角三角形,进而得到对应边、对应角相等。这个模型巧妙地把角平分线和三线合一联系了起来。
模型4 角平分线+平行线
如图,P是∠MO的平分线上一点,过点P作PQ∥ON,交OM于点Q。
结论:△POQ是等腰三角形。
【模型分析】
有角平分线时,常过角平分线上一点作角的一边的平行线,构造等腰三角形,为证明结论提供更多的条件,体现了角平分线与等腰三角形之间的密切关系。
【典例分析】
【模型1 角平分线上的点向两边作垂线】
【典例1】(2019秋•江北区期末)如图,D是∠EAF平分线上的一点,若∠ACD+∠ABD=180°,请说明CD=DB的理由.
【变式1-1】(2020秋•西城区校级期中)如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,
求证:∠A+∠C=180°.
【变式1-2】已知,如图,∠A=∠B=90°,M是AB的中点,DM平分∠ADC,求证:CM平分∠BCD.(提示:需过点M作CD的垂线段)
【典例2】如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB和∠CAP的度数.
【变式2】如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=( )
A.40° B.45° C.50° D.60°
【模型2 截取构造对称全等】
【典例3】在△ABC中,AD是∠BAC的外角平分线,P是AD上的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.
【变式3-1】已知:如图,在△ABC中,∠A=2∠B,CD平分∠ACB,且AC=6,AD=2.求BC的长.
【变式3-2】已知,如图AB=AC,∠A=108°,BD平分∠ABC交AC于D,求证:BC=AB+CD.
【变式3-3】如图,在△ABC中,∠A=100°,∠ABC=40°,BD是△ABC的角平分线.延长BD至E,使DE=AD,连接EC
(1)直接写出∠CDE的度数:∠CDE= ;
(2)猜想线段BC与AB+CE的数量关系为 ,并给出证明.
【模型3 角平分线+垂线构造等腰三角形】
【典例4】如图所示,已知等腰直角三角形ABC中,∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为点E,求证:BD=2CE.
【变式4-2】如图,△ABC中,∠ACB=90°,AC=BC,BD平分∠ABC,AE⊥BD,垂足为E.
(1)求∠EAC的度数;
(2)用等式表示线段AE与BD的数量关系,并证明.
【变式4-3】如图.在△ABC中,BE是角平分线,AD⊥BE,垂足为D,求证:∠2=∠1+∠C.
【模型4 角平分线+平行线】
【典例5】如图1,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.
(1)猜想:EF与BE、CF之间有怎样的关系.
(2)如图2,若AB≠AC,其他条件不变,在第(1)问中EF与BE、CF间的关系还存在吗?并说明理由.
(3)如图3,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.
【变式5-1】如图,在△ABC中,∠ABC和∠ACB的角平分线交于点E,过点E作MN∥BC交AB于点M,交AC于点N.若BM+CN=7,则MN的长为( )
A.6 B.7 C.8 D.9
【变式5-2】如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,
(1)请判断△BME与△ECN的形状,并说明理由?
(2)若BM+CN=9,求线段MN的长.
【变式5-3】如图,在△ABC,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EF∥AB.
【变式5-4】如图,在梯形ABCD中,AD∥BC,AE平分∠BAD,BE平分∠ABC,且AE、BE交CD于点E.试说明AD=AB﹣BC的理由.
【夯实基础】
1.如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC=9,则BD的长为( )
A.6 B.7 C.8 D.9
2.如图,△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点P.
(1)求∠APC的度数;
(2)若AE=3,CD=4,求线段AC的长.
3.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,∠BPC=40°.
(1)求∠BAC;
(2)证明:点P到△ABC三边所在直线的距离相等;
(3)求∠CAP.
4.如图,在△ABC中,∠ABC、∠ACB的平分线交于点E,过点E作EF∥BC,交AB于点M,交AC于点N.求证:MN=MB+NC.
5.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.
6.已知:如图,在四边形ABCD中,AD∥BC,点E是边CD上一点,且AE平分∠BAD,BE平分∠ABC.
求证:
(1)AE⊥BE;
(2)E是线段CD的中点.
7.(1)如图①在△ABC,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到AB的距离是 cm
(2)如图②,已知∠1=∠2,∠3=∠4,求证:AP平分∠BAC.
8.四边形ABCD中,DA=DC,连接BD,∠ABD=∠DBC.
(1)如图1,求证:∠BAD+∠BCD=180°;
(2)如图2,连接AC,当∠DAC=45°时,BC=3AB,S△DBC=27,求AB的长;
(3)如图3,在(2)的条件下,把△ADC沿AC翻折,点D的对应点是点E,AE交BC于点K,F是线段BC上一点,连接EF,∠BFE=45°,求△EFC的面积.
9.如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.
(1)如图1,若α=90°,根据教材中一个重要性质直接可得DA=CD,这个性质
是
(2)问题解决:如图2,求证AD=CD;
(3)问题拓展:如图3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证:BD+AD=BC.
10.阅读下面材料:
小聪遇到这样一个有关角平分线的问题:如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2,AC=3,求BC的长.
小聪思考:因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).
请完成:(1)求证:△BDE是等腰三角形;
(2)求BC的长为多少?
11.阅读材料:
小明遇到这样一个问题:如图1,在△AC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.
小明的想法:因为CD平分∠ACB,所以可利用“翻折”来解决该问题.即在BC边上取点E,使EC=AC,并连接DE(如图2).
(1)如图2,根据小明的想法,回答下面问题:
①△DEC和△DAC的关系是 ,判断的依据是 ;
②△BDE是 三角形;
③BC的长为 .
(2)参考小明的想法,解决下面问题:
已知:如图3,在△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2,求AD的长.
12.如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE=(AC﹣AB).(提示:延长BE交AC于点F).
13.如图,在△ABC中,AD为∠BAC的平分线,BP⊥AD,垂足为P.已知AB=5,BP=2,AC=9.试说明∠ABC=3∠ACB.
14.如图,△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC交BC于点D,过点B作BE⊥AD,交AD延长线于点E,F为AB的中点,连接CF,交AD于点G,连接BG.
(1)线段BE与线段AD有何数量关系?并说明理由;
(2)判断△BEG的形状,并说明理由.
【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题18 分式方程应用(四大类型)(原卷版+解析版): 这是一份【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题18 分式方程应用(四大类型)(原卷版+解析版),文件包含期末满分攻略2022-2023学年浙教版七年级数学下册讲学案-专题18分式方程应用四大类型解析版docx、期末满分攻略2022-2023学年浙教版七年级数学下册讲学案-专题18分式方程应用四大类型原卷版docx等2份学案配套教学资源,其中学案共42页, 欢迎下载使用。
【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题16 全等三角形中手拉手模型综合应用(原卷版+解析版): 这是一份【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题16 全等三角形中手拉手模型综合应用(原卷版+解析版),文件包含期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题16全等三角形中手拉手模型综合应用解析版docx、期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题16全等三角形中手拉手模型综合应用原卷版docx等2份学案配套教学资源,其中学案共34页, 欢迎下载使用。
【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题12 全等三角形基本模型(4大模型)(原卷版+解析版): 这是一份【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题12 全等三角形基本模型(4大模型)(原卷版+解析版),文件包含期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题12全等三角形基本模型4大模型解析版docx、期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题12全等三角形基本模型4大模型原卷版docx等2份学案配套教学资源,其中学案共30页, 欢迎下载使用。