终身会员
搜索
    上传资料 赚现金
    【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题09 二元一次方程组的实际应用(九大类型)
    立即下载
    加入资料篮
    【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题09 二元一次方程组的实际应用(九大类型)01
    【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题09 二元一次方程组的实际应用(九大类型)02
    【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题09 二元一次方程组的实际应用(九大类型)03
    还剩23页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题09 二元一次方程组的实际应用(九大类型)

    展开
    这是一份【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题09 二元一次方程组的实际应用(九大类型),共26页。学案主要包含了类型一:数字问题,变式1-1,变式1-2,类型二:年龄问题,变式2-1,变式2-2,类型三:鸡兔同笼问题,变式3-1等内容,欢迎下载使用。

    【类型一:数字问题】
    【典例1】一个两位数,十位上的数字比个位上的数字大2;交换十位上的数字与个位上的数字后得到的两位数比原数小18.设十位上的数字为x,个位上的数字为y,列方程组为( )
    A. B.
    C. D.
    【变式1-1】一个两位数,十位上的数字与个位上的数字之和为7,若把十位上的数字和个位上的数字交换位置,所得的数比原数大9,则原来的两位数是 .
    【变式1-2】一个两位数,十位上的数字与个位上数字和是8,将十位上数字与个位上数字对调,得到新数比原数的2倍多10.求原来的两位数.
    【类型二:年龄问题】
    【典例2】小明与哥哥的年龄和是24岁,小明对哥哥说:“当我的年龄是你现在年龄的时候,你就是24岁,”如果现在小明的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是( )
    A.B.
    C.D.
    【变式2-1】一天,小民去问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,125岁了,哈哈!”请你写出小民爷爷到底
    是 岁.
    【变式2-2】一名34岁的男子带着他的两个孩子一同进行晨跑,下面是两个孩子与记者的对话:
    根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.
    【类型三:鸡兔同笼问题】
    【典例3】小明同学仿照我国古代经典的“鸡兔同笼”问题给小石同学出了一道题目:“今有鸡兔同笼,上有十二头,下有四十足,问鸡兔各几何?”.若小石同学设笼中有鸡x只,兔y只,则根据题意可列方程组为 .
    【变式3-1】《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?
    【类型四:牛羊值金问题】
    【典例4】《九章算术》卷八方程第七题原文为:“今有牛五、羊二,直金十两.牛二、羊五直金八两.问牛、羊各直金几何?”题目大意是:现有5只牛、2只羊,共价值10两.2只牛、5只羊,共价值8两.那么每只牛、羊各价值多少?设每只牛、羊价值分别为x,y,则可列方程组为( )
    A. B.
    C. D.
    【类型五:几何问题】
    【典例5】如图,10块形状、大小相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则依题意可列方程组为( )
    A.B.
    C.D.
    【变式5-1】如图,将长方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大18°.设∠BAE和∠BAD的度数分别为x,y,那么x,y所适合的一个方程组是( )
    A.B.
    C.D.
    【变式5-2】用一根长80cm的绳子围成一个长方形,且这个长方形的长比宽多10cm.设这个长方形的长为xcm、宽为ycm,列出关于x、y的二元一次方程组,下列正确的是( )
    A.B.
    C.D.
    【类型六:球赛积分问题】
    【典例6】某市举办中学生足球赛,按比赛规则,每场比赛都要分出胜负,胜1场得3分,负一场扣1分,菁英中学队在8场比赛中得到12分,若设该队胜的场数为x,负的场数为y,则可列方程组为( )
    A.B.
    C.D.
    【变式6】“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分,某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分,那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为 .
    【类型七:盈不足问题】
    【典例7】《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长为x尺,绳子长为y尺,则可列方程组为( )
    A.B.
    C.D.
    【变式7-1】《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有二人共车九人步;三人共车,二车空.问:人与车各几何?译文:若每辆车都坐2人,则9需要步行:若每辆车都坐3人,则两辆车是空的,问:车与人各多少?设有x辆车,y个人,根据题意,列方程组是( )
    A.B.
    C.D.
    【变式7-2】今年6月,重庆实验外国语学校打算租用A、B两种型号大巴车共13辆用于高考送考,若全年级师生有544人,42座A型大巴车能全部坐满,45座B型大巴车有一辆还余23个座位;设乘坐A型大巴车x人,乘坐B型大巴车y人,根据题意可列出方程( )
    A. B.
    C. D.
    【类型八:销售问题】
    【典例8】根据市场调查,某种消毒液的大瓶装(500克)和小瓶装(250克)两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22500000克,这些消毒液应该分装大,小瓶两种产品各多少瓶?设这些消毒液应该分装大瓶x瓶,小瓶y瓶.依题意可列方程组为( )
    A.B.
    C. D.
    【变式8-1】天虹商场现销售某品牌运动套装,上衣和裤子一套售价500元.若将上衣价格下调5%,将裤子价格上调8%,则这样一套运动套装的售价提高0.2%.设上衣和裤子在调价前单价分别为x元和y元,则可列方程组为( )
    A.
    B.
    C.
    D.
    【类型九:方案问题】
    【典例9】在上海新冠疫情防控期间,从仓储中心向市区转运居民必需物资,已知2辆A型车和1辆B型车载满货物一次可运货13吨,1辆A型车和2辆B型车载满货物一次可运货14吨.某仓储中心现有45吨物资,计划租用A型车a辆B型车b辆(一种或两种车型均可),一次运完,且恰好每辆车都载满货物.
    (1)求1辆A型车和1辆B型车载满货物一次可分别运货多少吨?
    (2)若A型车每辆需租金110元/次,B型车每辆需租金150元/次,请选出最省钱的租车方案,并求出最少租车费.
    【变式9-1】某校组织七年级师生进行秋游,学校联系旅游公司提供车辆,该公司现有50座与35座两种车型,如果用35座的车,会有5人没座;如果全部换乘50座的车,则可少用2辆车,而且多出15个座位.
    (1)问该校一共有多少名师生参加了这次活动?
    (2)若35座车的日租金为250元/辆,50座车的日租金为320元/辆,在几种租车方案中,有哪种方案能使得座位刚好?用这种方案学校要出多少日租金?
    【变式9-2】某运输公司有A、B两种货车,4辆A货车与2辆B货车一次可以运货110吨,6辆A货车与4辆B货车一次可以运货180吨.
    (1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?
    (2)目前有190吨货物需要运输该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费600元,每辆B货车一次运货花费500元.请你列出所有的运输方案,并指出哪种运输方案费用最少.
    真题再现
    1.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是( )
    A.B.
    C.D.
    2.今年6月,重庆实验外国语学校打算租用A、B两种型号大巴车共13辆用于高考送考,若全年级师生有544人,42座A型大巴车能全部坐满,45座B型大巴车有一辆还余23个座位;设乘坐A型大巴车x人,乘坐B型大巴车y人,根据题意可列出方程( )
    A. B.
    C. D.
    3.某中学九年级毕业生在礼堂就座进行毕业典礼,若一条长椅上坐4人,就有22人没座位;若一条长椅上坐5人,最后一条长椅上空出了3个座位,设有x条长椅,毕业生有y人,试列出方程组.
    4.(2020•朝阳区校级一模)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒,现有正方形纸板300张,长方形纸板700张,若这些纸板恰好用完,则可做横式、竖式两种纸盒各多少个?
    5.小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数,小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”
    那么,你能回答以下问题吗?
    (1)他们取出的两张卡片上的数字分别是几?
    (2)第一次,他们拼出的两位数是多少?
    (3)第二次,他们拼成的两位数又是多少呢?请你好好动动脑筋哟!
    6.如图,把六个形状、大小完全相同的小矩形放入大矩形中,则下列方程组正确的是(单位:cm)( )
    A.B.
    C.D.
    7.某汽车专卖店销售A、B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额96万元,本周已售出2辆A型车和1辆B型车,销售额为62万元.
    (1)求每辆A型车和B型车的售价各是多少?
    (2)随着汽车限购限号政策的推行,预计下周起A,B两种型号的汽车价格在原有的基础上均有上涨,若A型汽车价格上涨m%,B型汽车价格上涨3m%,则同时购买一台A型车和一台B型车的费用比涨价前多12%,求m的值.
    8.(2021春•昆明期末)甲、乙两名同学都以不变的速度在环形路上跑步,如果同时同地出发,反向而行,每隔分钟相遇一次;如果同时同地出发,同向而行,每隔分钟快的追上慢的一次.已知甲比乙跑得快,求甲、乙两名同学每分钟各跑多少圈?
    9.(2022秋•昌图县期末)已知,从小明家到学校,先是一段上坡路,然后是一段下坡路,且小明走上坡路的平均速度为每分钟走60m,下坡路的平均速度为每分钟走90m,他从家里走到学校需要21min,从学校走到家里需要24min,求小明家到学校有多远.
    10.(2022春•江津区期中)A、B两地相距6km,甲、乙两人从A、B两地同时出发,若同向而行,甲3h可追上乙;若相向而行,1h相遇.求甲、乙两人的平均速度各是多少?
    专题09 二元一次方程组的实际应用(九大类型)
    典例分析
    【类型一:数字问题】
    【典例1】一个两位数,十位上的数字比个位上的数字大2;交换十位上的数字与个位上的数字后得到的两位数比原数小18.设十位上的数字为x,个位上的数字为y,列方程组为( )
    A. B.
    C. D.
    【答案】A
    【解答】解:设十位上的数字为x,个位上的数字为y,
    根据题意得:.
    故选:A.
    【变式1-1】一个两位数,十位上的数字与个位上的数字之和为7,若把十位上的数字和个位上的数字交换位置,所得的数比原数大9,则原来的两位数是 .
    【答案】34
    【解答】解:设原来的两位数十位上的数字为x,个位上的数字为y,
    依题意得:,
    解得:,
    ∴10x+y=10×3+4=34.
    故答案为:34.
    【变式1-2】一个两位数,十位上的数字与个位上数字和是8,将十位上数字与个位上数字对调,得到新数比原数的2倍多10.求原来的两位数.
    【解答】解:设原来的两位数的个位数为x,十位数为y,两位数可表示为10y+x,根据题意得:

    解得:,
    则原两位数为26.
    答:原来的两位数为26.
    【类型二:年龄问题】
    【典例2】小明与哥哥的年龄和是24岁,小明对哥哥说:“当我的年龄是你现在年龄的时候,你就是24岁,”如果现在小明的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是( )
    A.B.
    C.D.
    【答案】D
    【解答】解:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得

    故选:D.
    【变式2-1】一天,小民去问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,125岁了,哈哈!”请你写出小民爷爷到底
    是 岁.
    【答案】70
    【解答】解:设小民爷爷是x岁,小民是y岁,
    依题意得:,
    解得:.
    故答案为:70.
    【变式2-2】一名34岁的男子带着他的两个孩子一同进行晨跑,下面是两个孩子与记者的对话:
    根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.
    【解答】解:设妹妹的年龄是x岁,哥哥的年龄是y岁,
    依题意,得:,
    解得:.
    答:妹妹的年龄是6岁,哥哥的年龄是10岁.
    【类型三:鸡兔同笼问题】
    【典例3】小明同学仿照我国古代经典的“鸡兔同笼”问题给小石同学出了一道题目:“今有鸡兔同笼,上有十二头,下有四十足,问鸡兔各几何?”.若小石同学设笼中有鸡x只,兔y只,则根据题意可列方程组为 .
    【答案】
    【解答】解:根据题意可列方程组为:.
    故答案为:.
    【变式3-1】《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?
    【解答】解:设甲原有x文钱,乙原有y文钱,
    由题意可得,,
    解得:,
    答:甲原有36文钱,乙原有24文钱
    【类型四:牛羊值金问题】
    【典例4】《九章算术》卷八方程第七题原文为:“今有牛五、羊二,直金十两.牛二、羊五直金八两.问牛、羊各直金几何?”题目大意是:现有5只牛、2只羊,共价值10两.2只牛、5只羊,共价值8两.那么每只牛、羊各价值多少?设每只牛、羊价值分别为x,y,则可列方程组为( )
    A. B.
    C. D.
    【答案】C
    【解答】解:∵5只牛、2只羊,共价值10两,
    ∴5x+2y=10;
    ∵2只牛、5只羊,共价值8两,
    ∴2x+5y=8.
    ∴可列方程组为.
    故选:C.
    【类型五:几何问题】
    【典例5】如图,10块形状、大小相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则依题意可列方程组为( )
    A.B.
    C.D.
    【答案】A
    【解答】解:根据图示可得:.
    故选:A.
    【变式5-1】如图,将长方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大18°.设∠BAE和∠BAD的度数分别为x,y,那么x,y所适合的一个方程组是( )
    A.B.
    C.D.
    【答案】B
    【解答】解:设∠BAE和∠BAD的度数分别为x°和y°,
    依题意可列方程组:.
    故选:B.
    【变式5-2】用一根长80cm的绳子围成一个长方形,且这个长方形的长比宽多10cm.设这个长方形的长为xcm、宽为ycm,列出关于x、y的二元一次方程组,下列正确的是( )
    A.B.
    C.D.
    【答案】B
    【解答】解:设这个长方形的长为xcm、宽为ycm,由题意可得,

    故选:B.
    【类型六:球赛积分问题】
    【典例6】某市举办中学生足球赛,按比赛规则,每场比赛都要分出胜负,胜1场得3分,负一场扣1分,菁英中学队在8场比赛中得到12分,若设该队胜的场数为x,负的场数为y,则可列方程组为( )
    A.B.
    C.D.
    【答案】C
    【解答】解:依题意得:.
    故选:C.
    【变式6】“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分,某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分,那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为 .
    【答案】
    【解答】解:∵该足球队在第一轮比赛中赛了9场,只负了2场,
    ∴x+y+2=9;
    ∵胜一场得3分,平一场得1分,负一场得0分,该足球队在第一轮比赛中共得17分,
    ∴3x+y=17.
    ∴所列方程组为.
    故答案为:.
    【类型七:盈不足问题】
    【典例7】《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长为x尺,绳子长为y尺,则可列方程组为( )
    A.B.
    C.D.
    【答案】C
    【解答】解:由题意可得,,
    故选:C.
    【变式7-1】《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有二人共车九人步;三人共车,二车空.问:人与车各几何?译文:若每辆车都坐2人,则9需要步行:若每辆车都坐3人,则两辆车是空的,问:车与人各多少?设有x辆车,y个人,根据题意,列方程组是( )
    A.B.
    C.D.
    【答案】B
    【解答】解:根据题意得:

    故选:B.
    【变式7-2】今年6月,重庆实验外国语学校打算租用A、B两种型号大巴车共13辆用于高考送考,若全年级师生有544人,42座A型大巴车能全部坐满,45座B型大巴车有一辆还余23个座位;设乘坐A型大巴车x人,乘坐B型大巴车y人,根据题意可列出方程( )
    A. B.
    C. D.
    【答案】D
    【解答】解:设乘坐A型大巴车x人,乘坐B型大巴车y人,
    根据题意得:,
    故选:D.
    【类型八:销售问题】
    【典例8】根据市场调查,某种消毒液的大瓶装(500克)和小瓶装(250克)两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22500000克,这些消毒液应该分装大,小瓶两种产品各多少瓶?设这些消毒液应该分装大瓶x瓶,小瓶y瓶.依题意可列方程组为( )
    A.B.
    C. D.
    【答案】D
    【解答】解:∵该消毒液的大瓶装(500克)和小瓶装(250克)两种产品的销售数量(按瓶计算)比为2:5,
    ∴5x=2y;
    ∵该厂每天生产这种消毒液22500000克,
    ∴500x+250y=22500000.
    ∴依题意可列方程组.
    故选:D.
    【变式8-1】天虹商场现销售某品牌运动套装,上衣和裤子一套售价500元.若将上衣价格下调5%,将裤子价格上调8%,则这样一套运动套装的售价提高0.2%.设上衣和裤子在调价前单价分别为x元和y元,则可列方程组为( )
    A.
    B.
    C.
    D.
    【答案】C
    【解答】解:根据题意可列方程组为,
    故选:C.
    【类型九:方案问题】
    【典例9】在上海新冠疫情防控期间,从仓储中心向市区转运居民必需物资,已知2辆A型车和1辆B型车载满货物一次可运货13吨,1辆A型车和2辆B型车载满货物一次可运货14吨.某仓储中心现有45吨物资,计划租用A型车a辆B型车b辆(一种或两种车型均可),一次运完,且恰好每辆车都载满货物.
    (1)求1辆A型车和1辆B型车载满货物一次可分别运货多少吨?
    (2)若A型车每辆需租金110元/次,B型车每辆需租金150元/次,请选出最省钱的租车方案,并求出最少租车费.
    【解答】解:(1)设1辆A型车载满货物一次可运货x吨,1辆B型车载满货物一次可运货y吨,
    依题意得:,
    解得:.
    答:1辆A型车载满货物一次可运货4吨,1辆B型车载满货物一次可运货5吨.
    (2)依题意得:4a+5b=45,
    ∴b=9﹣a,
    又∵a,b均为自然数,
    ∴或或,
    ∴共有3种租车方案,
    方案1:租用9辆B型车,所需租车费为150×9=1350(元);
    方案2:租用5辆A型车,5辆B型车,所需租车费为110×5+150×5=1300(元);
    方案3:租用10辆A型车,1辆B型车,所需租车费为110×10+150×1=1250(元).
    ∵1350>1300>1250,
    ∴最省钱的租车方案为:租用10辆A型车,1辆B型车,最少租车费为1250元.
    【变式9-1】某校组织七年级师生进行秋游,学校联系旅游公司提供车辆,该公司现有50座与35座两种车型,如果用35座的车,会有5人没座;如果全部换乘50座的车,则可少用2辆车,而且多出15个座位.
    (1)问该校一共有多少名师生参加了这次活动?
    (2)若35座车的日租金为250元/辆,50座车的日租金为320元/辆,在几种租车方案中,有哪种方案能使得座位刚好?用这种方案学校要出多少日租金?
    【解答】解:(1)设参加互动师生共x人,
    由题意得:+2,
    即:10x﹣7x=105+50+700,
    解得:x=285.
    所以,参与本次师生互动的人共有285人.
    (2)假设租了35座汽车y辆,其余人乘坐50座客车,则所花租金等于:
    (285﹣35y)÷50×320+250y=(285﹣35y)×+250y=1724+26y,
    若要使租金最少,即要使(1724+26y)值最小,
    ∴当y=1时,租金为1750元时为最低.
    故租了35座汽车1辆,50座客车5辆最合算.
    【变式9-2】某运输公司有A、B两种货车,4辆A货车与2辆B货车一次可以运货110吨,6辆A货车与4辆B货车一次可以运货180吨.
    (1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?
    (2)目前有190吨货物需要运输该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费600元,每辆B货车一次运货花费500元.请你列出所有的运输方案,并指出哪种运输方案费用最少.
    【解答】解:(1)设1辆A货车一次可以运货x吨,1辆B货车一次可以运货y吨,
    依题意得:,
    解得:.
    ∴1辆A货车一次可以运货20吨,1辆B货车一次可以运货15吨.
    (2)设安排m辆A货车,n辆B货车,
    依题意得:20m+15n=190,
    ∴n=.
    又∵m,n均为正整数,
    ∴或或,
    ∴共有3种运输方案,
    方案1:安排2辆A货车,10辆B货车;
    方案2:安排5辆A货车,6辆B货车;
    方案3:安排8辆A货车,2辆B货车.
    选择方案1所需总运费为600×2+500×10=6200(元);
    选择方案2所需总运费为600×5+500×6=6000(元);
    选择方案3所需总运费为600×8+500×2=5800(元).
    ∵6200>6000>5800,
    ∴运输方案3费用最少.
    答:(1)1辆A货车一次可以运货20吨,1辆B货车一次可以运货15吨;(2)共有3种运输方案,方案1:安排2辆A货车,10辆B货车;方案2:安排5辆A货车,6辆B货车;方案3:安排8辆A货车,2辆B货车,运输方案3费用最少
    真题再现
    1.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是( )
    A.B.
    C.D.
    【答案】C
    【解答】解:依题意得:.
    故选:C.
    2.今年6月,重庆实验外国语学校打算租用A、B两种型号大巴车共13辆用于高考送考,若全年级师生有544人,42座A型大巴车能全部坐满,45座B型大巴车有一辆还余23个座位;设乘坐A型大巴车x人,乘坐B型大巴车y人,根据题意可列出方程( )
    A. B.
    C. D.
    【答案】D
    【解答】解:设乘坐A型大巴车x人,乘坐B型大巴车y人,
    根据题意得:,
    故选:D.
    3.某中学九年级毕业生在礼堂就座进行毕业典礼,若一条长椅上坐4人,就有22人没座位;若一条长椅上坐5人,最后一条长椅上空出了3个座位,设有x条长椅,毕业生有y人,试列出方程组.
    【解答】解:设有x条长椅,毕业生有y人,
    根据题意,列方程组得:.
    4.(2020•朝阳区校级一模)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒,现有正方形纸板300张,长方形纸板700张,若这些纸板恰好用完,则可做横式、竖式两种纸盒各多少个?
    【解答】解:设可做横式纸盒x个,可做竖式纸盒y个,依题意有

    解得.
    故可做横式纸盒100个,可做竖式纸盒100个.
    5.小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数,小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”
    那么,你能回答以下问题吗?
    (1)他们取出的两张卡片上的数字分别是几?
    (2)第一次,他们拼出的两位数是多少?
    (3)第二次,他们拼成的两位数又是多少呢?请你好好动动脑筋哟!
    【解答】解:(1)设他们取出的两个数字分别为x、y.
    第一次拼成的两位数为10x+y,第二次拼成的两位数为10y+x.
    根据题意得:

    由②,得:y﹣x=1③,
    ①+③得:y=5.
    则x=4,
    所以他们取出的两张卡片上的数字分别是4、5.
    (2)根据(1)得:
    十位数字是4,个位数字是5,
    所以第一次他们拼成的两位数为45.
    (3)根据(1)得,
    x,y的位置调换,所以十位数字是5,个位数字是,
    所以第二次拼成的两位数是54
    6.如图,把六个形状、大小完全相同的小矩形放入大矩形中,则下列方程组正确的是(单位:cm)( )
    A.B.
    C.D.
    【答案】A
    【解答】解:如图:小长方形的长为xcm,宽为ycm,
    依题意得:,
    故选:A.
    7.某汽车专卖店销售A、B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额96万元,本周已售出2辆A型车和1辆B型车,销售额为62万元.
    (1)求每辆A型车和B型车的售价各是多少?
    (2)随着汽车限购限号政策的推行,预计下周起A,B两种型号的汽车价格在原有的基础上均有上涨,若A型汽车价格上涨m%,B型汽车价格上涨3m%,则同时购买一台A型车和一台B型车的费用比涨价前多12%,求m的值.
    【解答】解:(1)设每辆A型车和B型车的售价分别是x万元、y万元.则

    解得 .
    答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;
    (2)根据题意,得:18×m%+26×3m%=(18+26)×12%,
    解得:m=5.5,
    答:m的值为5.5
    8.(2021春•昆明期末)甲、乙两名同学都以不变的速度在环形路上跑步,如果同时同地出发,反向而行,每隔分钟相遇一次;如果同时同地出发,同向而行,每隔分钟快的追上慢的一次.已知甲比乙跑得快,求甲、乙两名同学每分钟各跑多少圈?
    【解答】解:设甲每分钟跑x圈,乙每分钟跑y圈,
    依题意,得:,
    解得:,
    答:甲每分钟跑圈,乙每分钟跑圈.
    9.(2022秋•昌图县期末)已知,从小明家到学校,先是一段上坡路,然后是一段下坡路,且小明走上坡路的平均速度为每分钟走60m,下坡路的平均速度为每分钟走90m,他从家里走到学校需要21min,从学校走到家里需要24min,求小明家到学校有多远.
    【解答】解:设小明家上坡路有xm,下坡路有ym.
    依题意,得:,
    解得:,
    ∴540+1080=1620(m).
    答:小明家到学校有1620m.
    10.(2022春•江津区期中)A、B两地相距6km,甲、乙两人从A、B两地同时出发,若同向而行,甲3h可追上乙;若相向而行,1h相遇.求甲、乙两人的平均速度各是多少?
    【解答】解:设甲的平均速度是xkm/h,乙的平均速度是ykm/h,
    依题意得:,
    解得:.
    答:甲的平均速度是4km/h,乙的平均速度是2km/h.
    相关学案

    【期末满分攻略】2022-2023学年浙教版八年级数学下册讲学案-专题09 三角形中位线题型方法归纳(5大类型): 这是一份【期末满分攻略】2022-2023学年浙教版八年级数学下册讲学案-专题09 三角形中位线题型方法归纳(5大类型),文件包含期末满分攻略2022-2023学年浙教版八年级数学下册讲学案-专题09三角形中位线题型方法归纳5大类型解析版docx、期末满分攻略2022-2023学年浙教版八年级数学下册讲学案-专题09三角形中位线题型方法归纳5大类型原卷版docx等2份学案配套教学资源,其中学案共54页, 欢迎下载使用。

    【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题18 分式方程应用(四大类型)(原卷版+解析版): 这是一份【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题18 分式方程应用(四大类型)(原卷版+解析版),文件包含期末满分攻略2022-2023学年浙教版七年级数学下册讲学案-专题18分式方程应用四大类型解析版docx、期末满分攻略2022-2023学年浙教版七年级数学下册讲学案-专题18分式方程应用四大类型原卷版docx等2份学案配套教学资源,其中学案共42页, 欢迎下载使用。

    【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题15 分式化简求值(四大类型)(原卷版+解析版): 这是一份【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题15 分式化简求值(四大类型)(原卷版+解析版),文件包含期末满分攻略2022-2023学年浙教版七年级数学下册讲学案-专题15分式化简求值四大类型解析版docx、期末满分攻略2022-2023学年浙教版七年级数学下册讲学案-专题15分式化简求值四大类型原卷版docx等2份学案配套教学资源,其中学案共21页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【期末满分攻略】2022-2023学年浙教版七年级数学下册讲学案-专题09 二元一次方程组的实际应用(九大类型)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map