2019北京首都师大实验学校初一(上)期中数学(教师版)
展开2019北京首都师大实验学校初一(上)期中
数 学
一、选择题(共30分,每题3分)
1.(3分)的相反数是
A. B. C.2 D.
2.(3分)京津冀一体化协同发展是党中央的一项重大战略决策,它涉及到的国土面积约为120000平方公里,人口总数约为90 000 000人.将90 000 000用科学记数法表示结果为
A. B. C. D.
3.(3分)有理数,,,在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是
A. B. C. D.
4.(3分)一个矩形的周长为30,若矩形的一边长用字母表示,则此矩形的面积为
A. B. C. D.
5.(3分)下列各式的计算,正确的是
A. B.
C. D.
6.(3分)已知,则代数式的值是
A.1 B. C.5 D.
7.(3分)下列根据等式基本性质变形正确的是
A.由,得 B.由,得
C.由,得 D.由,得
8.(3分)下列各组运算中,结果为负数的是
A. B. C. D.
9.(3分)下列叙述正确的是
①有理数的相反数是;②有理数与差的平方列式为:;③如果,那么;④有理数的4倍列式为:.
A.①② B.②③ C.①③ D.①④
10.(3分)将正整数依次按如表规律排成4列,根据表中的排列规律,数2018应在
| 第1列 | 第2列 | 第3列 | 第4列 |
第1行 | 1 | 2 | 3 |
|
第2行 |
| 6 | 5 | 4 |
第3行 | 7 | 8 | 9 |
|
第4行 |
| 12 | 11 | 10 |
|
|
|
|
A.第672行第2列 B.第672行第3列 C.第673行第2列 D.第673行第3列
二、填空题(共19分,每题2分,12题3分)
11.(2分)比较大小: (用“或或”填空).
12.(2分)多项式是 次 项式,常数项是 .
13.(2分)用四舍五入法取近似数, (精确到百分位)
14.(2分)写出一个系数是2017,且只含、两个字母的三次单项式是 .
15.(2分)已知是方程的解,那么的值是 .
16.(2分)若与是同类项,则 .
17.(2分)若,则 .
18.(2分)传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用表示珐琅书签的销量,则可列出一元一次方程 .
19.(2分)有一张厚度为0.1毫米的纸片,对折1次后的厚度是毫米,继续对折,2次,3次,4次假设这张纸对折了20次,那么此时的厚度相当于每层高3米的楼房层数约是 .(参考数据:,
三、解答题(共51分)
20.画出数轴,并在数轴上表示下列各数,用“”号连接:.
21.计算:
(1).
(2).
(3).
22.化简下列各式:
(1).
(2).
23.先化简,再求值:,其中,.
24.在学习完《有理数》后,小奇对运算产生了浓厚的兴趣.借助有理数的运算,定义了一种新运算“⊕”,规则如下:⊕.
(1)求2⊕的值;
(2)求⊕⊕的值;
(3)试用学习有理数的经验和方法来探究这种新运算“⊕”是否具有交换律?请写出你的探究过程.
25.小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:
(1)用含,的代数式表示地面的总面积;
(2)已知,且客厅面积是卫生间面积的8倍,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?
26.李明在计算一个多项式减去时,误认为是加上此式,计算出错误结果为,请求出正确答案.
27.定义:若,则称与是关于1的平衡数.
(1)3与 是关于1的平衡数,与 是关于1的平衡数.(用含的代数式表示)
(2)若,,判断与是否是关于1的平衡数,并说明理由.
28.对于数轴上的两点,给出如下定义:,两点到原点的距离之差的绝对值称为,两点的绝对距离,记为.
例如:,两点表示的数如图1所示,则.
(1),两点表示的数如图2所示.
①求,两点的绝对距离;
②若为数轴上一点(不与点重合),且,求点表示的数;
(2),为数轴上的两点(点在点左边),且,若,直接写出点表示的数.
参考答案
一、选择题(共30分,每题3分)
1.【分析】根据相反数的定义:只有符号不同的两个数叫相反数即可求解.
【解答】解:根据概念得:的相反数是.
故选:.
【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.
2.【分析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.
【解答】解:将90 000 000用科学记数法表示结果为,
故选:.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.
3.【分析】根据有理数,,,在数轴上的对应点的位置,哪个数离原点的位置越近,则这个数的绝对值越小.
【解答】解:,,,中对应的点离原点最近,
这四个数中,绝对值最小的是.
故选:.
【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:哪个数离原点的位置越近,则这个数的绝对值越小.
4.【分析】根据已知表示出矩形的另一边长,进而利用矩形面积求法得出答案.
【解答】解:一个矩形的周长为30,矩形的一边长为,
矩形另一边长为:,
故此矩形的面积为:.
故选:.
【点评】此题主要考查了列代数式,根据题意表示出矩形的另一边长是解题关键.
5.【分析】根据合并同类项法则,对各选项计算后利用排除法求解.
【解答】解:、与不是同类项,不能合并,故错误;
、,故错误;
、正确;
、与不是同类项,不能合并,故错误.
故选:.
【点评】本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.注意不是同类项,不能合并.
6.【分析】原式前两项提取2变形后,将代入计算即可求出值.
【解答】解:原式,
当时,原式.
故选:.
【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.
7.【分析】根据等式的性质1,等式的两边都加或减同一个整式,结果不变,根据等式的性质2,等式的两边都乘或除以同一个不为零的整式,结果不变,可得答案.
【解答】解:、等式左边乘以,右边乘以3,故错误;
、等式的两边都加,得,故正确;
、等式的两边都减,得,故错误;
、等式的两边都加5,得,故错误;
故选:.
【点评】本题考查了等式的性质,利用了等式的性质1,等式的性质2.
8.【分析】先根据相反数、绝对值的意义及有理数的乘法、乘方运算法则化简各式,再根据小于0的数是负数进行选择.
【解答】解:、,结果为正数;
、,结果为正数;
、,结果为负数;
、,结果为正数;
故选:.
【点评】此题考查的知识点是正数和负数,注意:两数相乘,同号得正,异号得负,并把绝对值相乘;乘方是乘法的特例,因此乘方运算可转化成乘法法则,由乘法法则又得到了乘方符号法则,即正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶数次幂是正数.0的任何次幂都是0.
9.【分析】根据相反数的概念、绝对值的性质及代数式书写规范求解即可.
【解答】解:①有理数的相反数是,正确;
②有理数与差的平方列式为:,原列式错误;
③如果,那么,原表示错误;
④有理数的4倍列式为:,正确;
故选:.
【点评】本题主要考查列代数式,解题的关键是把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来.
10.【分析】由图表知,3个数字为一组,奇数行从左向右排列,偶数列是从右向左排列,,即可依据规律得出其位置.
【解答】解:,
排在第673行,第2列,
故选:.
【点评】本题考查数字的变化类,解题的关键是明确题意,找出数字的变化特点.
二、填空题(共19分,每题2分,12题3分)
11.【分析】根据两个负数比较大小,绝对值大的反而小,即可得出答案.
【解答】解:,
;
故答案为:.
【点评】此题考查了有理数的大小比较,掌握两个负数比较大小,绝对值大的反而小是解题的关键.
12.【分析】根据多项式中次数最高的项的次数叫做多项式的次数,单项式的个数就是多项式的项数,常数项是不含字母的项,即可得出答案.
【解答】解:多项式是五次四项式,常数项是.
故答案为:五,四,.
【点评】本题考查多项式,解题的关键是正确理解多项式的概念,本题属于基础题型.
13.【分析】把千分位上的数字4进行四舍五入即可.
【解答】解:(精确到百分位).
故答案为1.80.
【点评】本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.
14.【分析】根据数或字母的积组成的式子叫做单项式可得答案.
【解答】解:由题意得:.
故答案为:.
【点评】此题主要考查了单项式,关键是掌握单项式的定义,以及单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.
15.【分析】把代入方程计算即可求出的值.
【解答】解:把代入方程得:,
解得:,
则的值为,
故答案为:
【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
16.【分析】利用同类项的定义求出与的值,即可确定出的值.
【解答】解:与是同类项,
,,
,,
.
【点评】此题考查了同类项,熟练掌握同类项的定义是解本题的关键.
17.【分析】根据非负数的性质列出方程求出、的值,代入所求代数式计算即可.
【解答】解:由题意得,,,
解得,,,
则,
故答案为:2.
【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.
18.【分析】设珐琅书签的销售了件,则文创笔记本销售了件,根据文创笔记本和珐琅书签共销售5900件,即可得出关于的一元一次方程,此题得解.
【解答】解:设珐琅书签的销售了件,则文创笔记本销售了件,
根据题意得:.
故答案为:.
【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.
19.【分析】根据对折规律确定出对折2次的厚度,再利用对折规律确定出楼层即可.
【解答】解:根据题意得,对折两次的厚度为:(毫米),
故对折20次的厚度为毫米,
层,
则对折20次后相当于每层高度为3米的楼房35层.
故答案为:35.
【点评】此题考查了规律型:数字的变化类,有理数的乘方,熟练掌握乘方的意义是解本题的关键.
三、解答题(共51分)
20.【分析】根据实数在数轴上对应的点、实数的大小关系解决此题.
【解答】解:,,
在数轴上对应的点表示如下:
.
【点评】本题主要考查实数在数轴上对应的点、实数的大小比较,熟练掌握实数在数轴上对应的点、实数的大小关系是解决本题的关键.
21.【分析】(1)先化简绝对值,将减法转化为加法,然后再计算;
(2)使用乘法分配律进行简便计算;
(3)先算乘方,然后算乘法,最后算加减,有小括号先算小括号里面的.
【解答】解:(1)原式
;
(2)原式
;
(3)原式
.
【点评】此题主要考查了有理数的混合运算,注意明确有理数混合运算顺序(先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算),掌握乘法分配律使得计算简便是解题关键.
22.【分析】(1)合并同类项进行化简;
(2)先去括号,然后合并同类项进行化简.
【解答】解:(1)原式
;
(2)原式
.
【点评】本题考查整式的加减,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“”号,去掉“”号和括号,括号里的各项不变号;括号前面是“”号,去掉“”号和括号,括号里的各项都变号)是解题关键.
23.【分析】先去括号、合并同类项化简原式,再将、的值代入计算可得.
【解答】解:原式
,
当、时,
原式
.
【点评】本题考查了整式的加减和求值,能正确根据整式的加减法则进行化简是解此题的关键.
24.【分析】(1)将,代入⊕计算可得;
(2)根据法则,先计算⊕,再计算⊕可得;
(3)计算2⊕和⊕2即可得出答案.
【解答】解:(1)2⊕
;
(2)⊕⊕
⊕
⊕
⊕
;
(3)不具有交换律,
例如:2⊕;
⊕,
⊕⊕2,
不具有交换律.
【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则及新定义的运用.
25.【分析】(1)根据总面积等于四个部分矩形的面积之和列式整理即可得解;
(2)根据题意求出的值,把,的值代入计算即可.
【解答】解:(1).
(2)时
根据题意,得,
铺1平方米地砖的平均费用为100元,
铺地砖的总费用为:
.
答:铺地砖的总费用4500元.
【点评】此题考查了列代数式,准确表示出各部分矩形的长和宽是解题的关键.
26.【分析】根据题意先计算出被减数式,然后再进行减法运算即可.
【解答】解:被减数式
,
故可得正确结果
.
【点评】此题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.
27.【分析】(1)由平衡数的定义可求得答案;
(2)计算是否等于2即可.
【解答】解:
(1)设3的关于1的平衡数为,则,解得,
与是关于1的平衡数,
设的关于1的平衡数为,则,解得,
与是关于1的平衡数,
故答案为:;;
(2)与不是关于1的平衡数,理由如下:
,,
,
与不是关于1的平衡数.
【点评】本题主要考查整式的加减,理解题目中所给平衡数的定义是解题的关键.
28.【分析】(1)①根据两点的绝对距离的定义即可求解;
②先根据得到,再根据两点的绝对距离的定义即可求解;
(2)根据两点间的距离公式,以及,即可写出点表示的数.
【解答】解:(1)①求,两点的绝对距离为2;
②,,
,
点表示的数为2或;
(2),,点在点左边,
点表示的数为或.
【点评】本题考查了数轴,解题关键是要读懂题目的意思,理解两点的绝对距离的定义.
2021北京首都师大附中初一(下)期末数学(教师版): 这是一份2021北京首都师大附中初一(下)期末数学(教师版),共20页。试卷主要包含了选择题,填空题,解答题解答应写出文字说明等内容,欢迎下载使用。
2020北京首都师大附中初一(下)期末数学(教师版): 这是一份2020北京首都师大附中初一(下)期末数学(教师版),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2020北京宣武外国语实验学校初一(上)期中数学(教师版): 这是一份2020北京宣武外国语实验学校初一(上)期中数学(教师版),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。