终身会员
搜索
    上传资料 赚现金
    新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第3讲函数的奇偶性与周期性课件
    立即下载
    加入资料篮
    新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第3讲函数的奇偶性与周期性课件01
    新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第3讲函数的奇偶性与周期性课件02
    新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第3讲函数的奇偶性与周期性课件03
    新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第3讲函数的奇偶性与周期性课件04
    新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第3讲函数的奇偶性与周期性课件05
    新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第3讲函数的奇偶性与周期性课件06
    新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第3讲函数的奇偶性与周期性课件07
    新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第3讲函数的奇偶性与周期性课件08
    还剩52页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第3讲函数的奇偶性与周期性课件

    展开
    这是一份新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第3讲函数的奇偶性与周期性课件,共60页。PPT课件主要包含了知识梳理·双基自测,名师讲坛·素养提升,考点突破·互动探究,f-x=fx,最小的正数,最小正数,②③⑤,log43,ln2,解法二图象法等内容,欢迎下载使用。

    第三讲 函数的奇偶性与周期性
    知识梳理 · 双基自测
    知识点一 函数的奇偶性
    f(-x)=-f(x)
    知识点二 函数的周期性1.周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有______________________,那么就称函数y=f(x)为周期函数,称T为这个函数的周期.2.最小正周期如果在周期函数f(x)的所有周期中存在一个_____________,那么这个___________就叫做f(x)的最小正周期.
    f(x+T)=f(x)
    1.奇(偶)函数定义的等价形式
    2.若y=f(x)为奇函数,y=g(x)为奇函数,在公共定义域内(1)y=f(x)±g(x)为奇函数;
    3.对f(x)的定义域内任一自变量的值x,最小正周期为T(1)若f(x+a)=-f(x),则T=2|a|;
    5.一些重要类型的奇偶函数(1)函数f(x)=ax+a-x为偶函数,函数f(x)=ax-a-x为奇函数;
    题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y=x2,x∈(0,+∞)是偶函数.(   )(2)若函数f(x)是奇函数,则必有f(0)=0.(   )(3)若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称.(   )(4)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.(   )
    (5)2π是函数f(x)=sin x,x∈(-∞,0)的一个周期.(   )
    题组二 走进教材2.(必修1P85T2改编)下列函数中为奇函数的序号是_________;偶函数的序号是_____.①f(x)=2x4+3x2; ②f(x)=x3-2x;
    4.(必修1P85T1改编)若函数y=f(x)(x∈R)是奇函数,则下列坐标表示的点一定在函数y=f(x)图象上的是(   )A.(a,-f(a)) B.(-a,-f(a))C.(-a,-f(-a)) D.(a,f(-a))[解析] ∵函数y=f(x)为奇函数,∴f(-a)=-f(a).即点(-a,-f(a))一定在函数y=f(x)的图象上.
    5.(必修1P87T12改编)若奇函数f(x)在区间[a,b]上是减函数,则它在[-b,-a]上是_____函数;若偶函数f(x)在区间[a,b]上是增函数,则它在[-b,-a]上是_____函数.6.(必修1P86T11改编)已知函数f(x)满足f(x+2)=f(x),当x∈[0,1]时,f(x)=lg4(x2+3),则f(2 024)=_____________.
    7.(必修1P86T3改编)已知f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+m,则f(-3)=_______.[解析] 因为f(x)为R上的奇函数,所以f(0)=0,即f(0)=20+m=0,解得m=-1,故f(x)=2x-1(x≥0),则f(-3)=-f(3)=-(23-1)=-7.
    [解析] 思路一:将函数f(x)的解析式分离常数,通过图象变换可得函数图象关于(0,0)对称,此函数即为奇函数;思路二:由函数f(x)的解析式,求出选项中的函数解析式,由函数奇偶性定义来判断.
    考点突破 · 互动探究
    考向1 判断函数的奇偶性——自主练透 设f(x)=ex+e-x,g(x)=ex-e-x,f(x),g(x)的定义域均为R,下列结论错误的是(   )A.|g(x)|是偶函数B.f(x)g(x)是奇函数C.f(x)|g(x)|是偶函数D.f(x)+g(x)是奇函数
    [解析] f(-x)=e-x+ex=f(x),f(x)为偶函数.g(-x)=e-x-ex=-g(x),g(x)为奇函数.|g(-x)|=|-g(x)|=|g(x)|,|g(x)|为偶函数,A正确;f(-x)g(-x)=f(x)[-g(x)]=-f(x)g(x),所以f(x)g(x)为奇函数,B正确;f(-x)|g(-x)|=f(x)|g(x)|,所以f(x)|g(x)|是偶函数,C正确;f(x)+g(x)=2ex,f(-x)+g(-x)=2e-x≠-[f(x)+g(x)],所以f(x)+g(x)不是奇函数,D错误.
    判断下列函数的奇偶性.
    [分析] 先求出定义域,看定义域是否关于原点对称,在定义域内,解析式带绝对值号的先化简,计算f(-x),再判断f(-x)与f(x)之间的关系.抽象函数常用赋值法判断.
    (3)函数的定义域x∈(-∞,+∞),关于原点对称.∵f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-(|x+1|-|x-1|)=-f(x),∴f(x)=|x+1|-|x-1|是奇函数.(4)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x>0时,f(x)=x2+x,则当x<0时,-x>0,故f(-x)=x2-x=f(x);当x<0时,f(x)=x2-x,则当x>0时,-x<0,故f(-x)=x2+x=f(x),故原函数是偶函数.
    (5)去掉绝对值符号,根据定义判断.
    判断函数的奇偶性的方法(1)定义法:若函数的定义域不是关于原点对称的区间,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的区间,再判断f(-x)是否等于f(x)或-f(x),据此得出结论.(2)图象法:奇(偶)函数的充要条件是它的图象关于原点(或y轴)对称.(3)性质法:偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数的和、差仍为奇函数;奇(偶)数个奇函数的积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(注:利用上述结论时要注意各函数的定义域)
    考向2 函数奇偶性的综合应用——多维探究角度1 利用性质求解析式 设f(x)为奇函数,且当x≥0时,f(x)=ex-1,则当x<0时,f(x)=(   )A.e-x-1 B.e-x+1C.-e-x-1 D.-e-x+1
    [解析] 任取x<0,则-x>0,由f(-x)=e-x-1,又f(x)为奇函数,∴f(-x)=-f(x),即f(x)=-f(-x)=-e-x+1.故选D.
    角度2 利用奇偶性求参数的值或取值范围 (1)已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,则a+b=(   )
    1.求函数解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f(x)的方程(组),从而得到f(x)的解析式.2.求解析式中的参数值:在定义域关于原点对称的前提下,利用f(x)为奇函数⇔f(-x)=-f(x),f(x)为偶函数⇔f(x)=f(-x),列式求解,也可利用特殊值法求解.对于在x=0处有定义的奇函数f(x),可考虑列等式f(0)=0求解.
    〔变式训练1〕(1)(角度1)将例3中的f(x)为奇函数改为偶函数,则当x<0时,f(x)=(   )A.e-x-1 B.e-x+1C.-e-x-1 D.-e-x+1(2)(角度2)(2021·新高考全国Ⅰ)已知函数f(x)=x3(a·2x-2-x)是偶函数,则a=_____.
    [解析] (1)当x<0时,f(x)=f(-x)=e-x-1.故选A.(2)解法一(定义法):因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,所以f(-x)=f(x)对任意的x∈R恒成立,所以(-x)3(a·2-x-2x)=x3(a·2x-2-x)对任意的x∈R恒成立,所以x3(a-1)(2x+2-x)=0对任意的x∈R恒成立,所以a=1.解法二(取特殊值检验法):因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,
    所以a=1.解法三(转化法):由题意知f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数.设g(x)=x3,h(x)=a·2x-2-x,因为g(x)=x3为奇函数,所以h(x)=a·2x-2-x为奇函数,所以h(0)=a·20-2-0=0,解得a=1,经检验,f(x)=x3(2x-2-x)为偶函数,所以a=1.
    设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2)时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)求f(2)的值;(3)当x∈(2,4]时,求f(x)的解析式;(4)计算f(0)+f(1)+f(2)+…+f(2 023).
    [解析] (1)证明:∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)是周期为4的周期函数.(2)f(2)=f(0+2)=-f(0)=0.(3)当x∈(-2,0]时,-x∈[0,2),由已知得f(-x)=2(-x)-(-x)2=-2x-x2.又f(x)是奇函数,∴f(-x)=-f(x)=-2x-x2.∴f(x)=x2+2x.又当x∈(2,4]时,x-4∈(-2,0],
    ∴f(x-4)=(x-4)2+2(x-4).又f(x)是周期为4的周期函数,∴f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.即当x∈(2,4]时,f(x)=x2-6x+8.(4)∵f(0)=0,f(1)=1,f(2)=0,f(3)=-1,且f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 020)+f(2 021)+f(2 022)+f(2 023)=0.∴f(0)+f(1)+f(2)+…+f(2 021)+f(2 022)+f(2 023)=0.
    高考中对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值,以及解决与周期有关的函数综合问题.解决此类问题的关键是充分利用题目提供的信息,找到函数的周期,利用周期在有定义的范围内进行求解.函数周期性的三个常用结论:
    角度1 奇偶性与单调性结合 若定义在R上的奇函数f(x)在(-∞,0)上单调递减,且f(2)=0,则满足f(x)≥0的取值范围是(   )A.(-∞,-2]B.[0,2]C.(-∞,-2]∪[0,2]D.(-∞,-2]∪[2,+∞)
    [解析] 由已知得图象,故选C.
    [引申1]若将“奇函数”改为偶函数,则结果为_____.[解析] 如图.
    [引申2]若将例6中不等式改为xf(x-1)≥0呢?结果为_____________.
    [-1,0]∪[1,3]
    角度2 奇偶性与周期性结合
    角度3 单调性、奇偶性和周期性结合 已知定义在R上的奇函数f(x)满足f(x-4)=-f(x)且在区间[0,2]上是增函数,则(   )A.f(-25)[解析] 因为f(x)满足f(x-4)=-f(x),所以f(x-8)=f(x),所以函数f(x)是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3).由f(x)是定义在R上的奇函数,且满足f(x-4)=-f(x),得f(11)=f(3)=-f(-1)=f(1).因为f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数,所以f(x)在区间[-2,2]上是增函数,所以f(-1)函数性质综合应用问题的常见类型及解题策略1.函数单调性与奇偶性结合.注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性.2.周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.3.周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.
    〔变式训练2〕(1)(角度1)(2023·郴州第二次数学质量检测)已知f(x)是定义在[2b,1-b]上的偶函数,且在[2b,0]上为增函数,则f(x-1)≤f(2x)的解集为(   )
    (2)(角度2)(多选题)函数f(x)的定义域为R,若f(x+1)与f(x-1)都是偶函数,则( )A.f(x)是偶函数 B.f(x)是奇函数C.f(x+3)是偶函数 D.f(x)=f(x+4)
    [解析] (1)∵f(x)是定义在[2b,1-b]上的偶函数,∴2b+1-b=0,∴b=-1,∵f(x)在[2b,0]上为增函数,即函数f(x)在[-2,0]上为增函数,故函数f(x)在(0,2]上为减函数,则由f(x-1)≤f(2x),可得|x-1|≥|2x|,即(x-1)2≥4x2,
    (2)因为f(x+1)是偶函数,所以f(-x+1)=f(x+1),从而f(-x)=f(x+2).因为f(x-1)是偶函数,所以f(-x-1)=f(x-1),从而f(-x)=f(x-2).所以f(x+2)=f(x-2),f(x+4)=f(x),所以f(x)是以4为周期的周期函数.因为f(-x-1)=f(x-1),所以f(-x-1+4)=f(x-1+4),即f(-x+3)=f(x+3),所以f(x+3)是偶函数.
    (3)由于f(x+1)为奇函数,所以函数f(x)的图象关于点(1,0)对称,即有f(x)+f(2-x)=0,所以f(1)+f(2-1)=0,得f(1)=0,即a+b=0①.由于f(x+2)为偶函数,所以函数f(x)的图象关于直线x=2对称,即有f(x)-f(4-x)=0,所以f(0)+f(3)=-f(2)+f(1)=-4a-b+a+b=-3a=6②.根据①②可得a=-2,b=2,所以当x∈[1,2]时,f(x)=-2x2+2.
    名师讲坛 · 素养提升
    函数三大性质的综合应用
    ①直线x=-6是函数y=f(x)的图象的一条对称轴;②函数y=f(x)在[-9,-6]上为增函数;③函数y=f(x)在[-9,9]上有四个零点.其中所有正确命题的序号为_______.
    函数的奇偶性、周期性及单调性,在高考中常常将它们综合在一起命题,解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.
    〔变式训练3〕已知f(x)的定义域为R,其函数图象关于直线x=-3对称,且f(x+3)=f(x-3),若当x∈[0,3]时,f(x)=2x+1,则下列结论正确的是_________.(填序号)①f(x)为偶函数;②f(x)在[-6,-3]上单调递减;③f(x)关于直线x=3对称;④f(100)=5.
    相关课件

    新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第8讲函数与方程课件: 这是一份新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第8讲函数与方程课件,共60页。PPT课件主要包含了第八讲函数与方程,知识梳理·双基自测,名师讲坛·素养提升,考点突破·互动探究,fx=0,fafb<0,fc=0,fafb0,一分为二,〔变式训练1〕等内容,欢迎下载使用。

    新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第9讲函数模型及其应用课件: 这是一份新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第9讲函数模型及其应用课件,共53页。PPT课件主要包含了知识梳理·双基自测,名师讲坛·素养提升,考点突破·互动探究,题组三走向高考,〔变式训练2〕等内容,欢迎下载使用。

    新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第7讲函数的图象课件: 这是一份新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第7讲函数的图象课件,共60页。PPT课件主要包含了第七讲函数的图象,知识梳理·双基自测,名师讲坛·素养提升,考点突破·互动探究,平移变换,伸缩变换,-fx,f-x,-f-x,y=x等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第3讲函数的奇偶性与周期性课件
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map