新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第3讲函数的奇偶性与周期性课件
展开第三讲 函数的奇偶性与周期性
知识梳理 · 双基自测
知识点一 函数的奇偶性
f(-x)=-f(x)
知识点二 函数的周期性1.周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有______________________,那么就称函数y=f(x)为周期函数,称T为这个函数的周期.2.最小正周期如果在周期函数f(x)的所有周期中存在一个_____________,那么这个___________就叫做f(x)的最小正周期.
f(x+T)=f(x)
1.奇(偶)函数定义的等价形式
2.若y=f(x)为奇函数,y=g(x)为奇函数,在公共定义域内(1)y=f(x)±g(x)为奇函数;
3.对f(x)的定义域内任一自变量的值x,最小正周期为T(1)若f(x+a)=-f(x),则T=2|a|;
5.一些重要类型的奇偶函数(1)函数f(x)=ax+a-x为偶函数,函数f(x)=ax-a-x为奇函数;
题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y=x2,x∈(0,+∞)是偶函数.( )(2)若函数f(x)是奇函数,则必有f(0)=0.( )(3)若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称.( )(4)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.( )
(5)2π是函数f(x)=sin x,x∈(-∞,0)的一个周期.( )
题组二 走进教材2.(必修1P85T2改编)下列函数中为奇函数的序号是_________;偶函数的序号是_____.①f(x)=2x4+3x2; ②f(x)=x3-2x;
4.(必修1P85T1改编)若函数y=f(x)(x∈R)是奇函数,则下列坐标表示的点一定在函数y=f(x)图象上的是( )A.(a,-f(a)) B.(-a,-f(a))C.(-a,-f(-a)) D.(a,f(-a))[解析] ∵函数y=f(x)为奇函数,∴f(-a)=-f(a).即点(-a,-f(a))一定在函数y=f(x)的图象上.
5.(必修1P87T12改编)若奇函数f(x)在区间[a,b]上是减函数,则它在[-b,-a]上是_____函数;若偶函数f(x)在区间[a,b]上是增函数,则它在[-b,-a]上是_____函数.6.(必修1P86T11改编)已知函数f(x)满足f(x+2)=f(x),当x∈[0,1]时,f(x)=lg4(x2+3),则f(2 024)=_____________.
7.(必修1P86T3改编)已知f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+m,则f(-3)=_______.[解析] 因为f(x)为R上的奇函数,所以f(0)=0,即f(0)=20+m=0,解得m=-1,故f(x)=2x-1(x≥0),则f(-3)=-f(3)=-(23-1)=-7.
[解析] 思路一:将函数f(x)的解析式分离常数,通过图象变换可得函数图象关于(0,0)对称,此函数即为奇函数;思路二:由函数f(x)的解析式,求出选项中的函数解析式,由函数奇偶性定义来判断.
考点突破 · 互动探究
考向1 判断函数的奇偶性——自主练透 设f(x)=ex+e-x,g(x)=ex-e-x,f(x),g(x)的定义域均为R,下列结论错误的是( )A.|g(x)|是偶函数B.f(x)g(x)是奇函数C.f(x)|g(x)|是偶函数D.f(x)+g(x)是奇函数
[解析] f(-x)=e-x+ex=f(x),f(x)为偶函数.g(-x)=e-x-ex=-g(x),g(x)为奇函数.|g(-x)|=|-g(x)|=|g(x)|,|g(x)|为偶函数,A正确;f(-x)g(-x)=f(x)[-g(x)]=-f(x)g(x),所以f(x)g(x)为奇函数,B正确;f(-x)|g(-x)|=f(x)|g(x)|,所以f(x)|g(x)|是偶函数,C正确;f(x)+g(x)=2ex,f(-x)+g(-x)=2e-x≠-[f(x)+g(x)],所以f(x)+g(x)不是奇函数,D错误.
判断下列函数的奇偶性.
[分析] 先求出定义域,看定义域是否关于原点对称,在定义域内,解析式带绝对值号的先化简,计算f(-x),再判断f(-x)与f(x)之间的关系.抽象函数常用赋值法判断.
(3)函数的定义域x∈(-∞,+∞),关于原点对称.∵f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-(|x+1|-|x-1|)=-f(x),∴f(x)=|x+1|-|x-1|是奇函数.(4)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x>0时,f(x)=x2+x,则当x<0时,-x>0,故f(-x)=x2-x=f(x);当x<0时,f(x)=x2-x,则当x>0时,-x<0,故f(-x)=x2+x=f(x),故原函数是偶函数.
(5)去掉绝对值符号,根据定义判断.
判断函数的奇偶性的方法(1)定义法:若函数的定义域不是关于原点对称的区间,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的区间,再判断f(-x)是否等于f(x)或-f(x),据此得出结论.(2)图象法:奇(偶)函数的充要条件是它的图象关于原点(或y轴)对称.(3)性质法:偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数的和、差仍为奇函数;奇(偶)数个奇函数的积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(注:利用上述结论时要注意各函数的定义域)
考向2 函数奇偶性的综合应用——多维探究角度1 利用性质求解析式 设f(x)为奇函数,且当x≥0时,f(x)=ex-1,则当x<0时,f(x)=( )A.e-x-1 B.e-x+1C.-e-x-1 D.-e-x+1
[解析] 任取x<0,则-x>0,由f(-x)=e-x-1,又f(x)为奇函数,∴f(-x)=-f(x),即f(x)=-f(-x)=-e-x+1.故选D.
角度2 利用奇偶性求参数的值或取值范围 (1)已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,则a+b=( )
1.求函数解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f(x)的方程(组),从而得到f(x)的解析式.2.求解析式中的参数值:在定义域关于原点对称的前提下,利用f(x)为奇函数⇔f(-x)=-f(x),f(x)为偶函数⇔f(x)=f(-x),列式求解,也可利用特殊值法求解.对于在x=0处有定义的奇函数f(x),可考虑列等式f(0)=0求解.
〔变式训练1〕(1)(角度1)将例3中的f(x)为奇函数改为偶函数,则当x<0时,f(x)=( )A.e-x-1 B.e-x+1C.-e-x-1 D.-e-x+1(2)(角度2)(2021·新高考全国Ⅰ)已知函数f(x)=x3(a·2x-2-x)是偶函数,则a=_____.
[解析] (1)当x<0时,f(x)=f(-x)=e-x-1.故选A.(2)解法一(定义法):因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,所以f(-x)=f(x)对任意的x∈R恒成立,所以(-x)3(a·2-x-2x)=x3(a·2x-2-x)对任意的x∈R恒成立,所以x3(a-1)(2x+2-x)=0对任意的x∈R恒成立,所以a=1.解法二(取特殊值检验法):因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,
所以a=1.解法三(转化法):由题意知f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数.设g(x)=x3,h(x)=a·2x-2-x,因为g(x)=x3为奇函数,所以h(x)=a·2x-2-x为奇函数,所以h(0)=a·20-2-0=0,解得a=1,经检验,f(x)=x3(2x-2-x)为偶函数,所以a=1.
设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2)时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)求f(2)的值;(3)当x∈(2,4]时,求f(x)的解析式;(4)计算f(0)+f(1)+f(2)+…+f(2 023).
[解析] (1)证明:∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)是周期为4的周期函数.(2)f(2)=f(0+2)=-f(0)=0.(3)当x∈(-2,0]时,-x∈[0,2),由已知得f(-x)=2(-x)-(-x)2=-2x-x2.又f(x)是奇函数,∴f(-x)=-f(x)=-2x-x2.∴f(x)=x2+2x.又当x∈(2,4]时,x-4∈(-2,0],
∴f(x-4)=(x-4)2+2(x-4).又f(x)是周期为4的周期函数,∴f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.即当x∈(2,4]时,f(x)=x2-6x+8.(4)∵f(0)=0,f(1)=1,f(2)=0,f(3)=-1,且f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 020)+f(2 021)+f(2 022)+f(2 023)=0.∴f(0)+f(1)+f(2)+…+f(2 021)+f(2 022)+f(2 023)=0.
高考中对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值,以及解决与周期有关的函数综合问题.解决此类问题的关键是充分利用题目提供的信息,找到函数的周期,利用周期在有定义的范围内进行求解.函数周期性的三个常用结论:
角度1 奇偶性与单调性结合 若定义在R上的奇函数f(x)在(-∞,0)上单调递减,且f(2)=0,则满足f(x)≥0的取值范围是( )A.(-∞,-2]B.[0,2]C.(-∞,-2]∪[0,2]D.(-∞,-2]∪[2,+∞)
[解析] 由已知得图象,故选C.
[引申1]若将“奇函数”改为偶函数,则结果为_____.[解析] 如图.
[引申2]若将例6中不等式改为xf(x-1)≥0呢?结果为_____________.
[-1,0]∪[1,3]
角度2 奇偶性与周期性结合
角度3 单调性、奇偶性和周期性结合 已知定义在R上的奇函数f(x)满足f(x-4)=-f(x)且在区间[0,2]上是增函数,则( )A.f(-25)
〔变式训练2〕(1)(角度1)(2023·郴州第二次数学质量检测)已知f(x)是定义在[2b,1-b]上的偶函数,且在[2b,0]上为增函数,则f(x-1)≤f(2x)的解集为( )
(2)(角度2)(多选题)函数f(x)的定义域为R,若f(x+1)与f(x-1)都是偶函数,则( )A.f(x)是偶函数 B.f(x)是奇函数C.f(x+3)是偶函数 D.f(x)=f(x+4)
[解析] (1)∵f(x)是定义在[2b,1-b]上的偶函数,∴2b+1-b=0,∴b=-1,∵f(x)在[2b,0]上为增函数,即函数f(x)在[-2,0]上为增函数,故函数f(x)在(0,2]上为减函数,则由f(x-1)≤f(2x),可得|x-1|≥|2x|,即(x-1)2≥4x2,
(2)因为f(x+1)是偶函数,所以f(-x+1)=f(x+1),从而f(-x)=f(x+2).因为f(x-1)是偶函数,所以f(-x-1)=f(x-1),从而f(-x)=f(x-2).所以f(x+2)=f(x-2),f(x+4)=f(x),所以f(x)是以4为周期的周期函数.因为f(-x-1)=f(x-1),所以f(-x-1+4)=f(x-1+4),即f(-x+3)=f(x+3),所以f(x+3)是偶函数.
(3)由于f(x+1)为奇函数,所以函数f(x)的图象关于点(1,0)对称,即有f(x)+f(2-x)=0,所以f(1)+f(2-1)=0,得f(1)=0,即a+b=0①.由于f(x+2)为偶函数,所以函数f(x)的图象关于直线x=2对称,即有f(x)-f(4-x)=0,所以f(0)+f(3)=-f(2)+f(1)=-4a-b+a+b=-3a=6②.根据①②可得a=-2,b=2,所以当x∈[1,2]时,f(x)=-2x2+2.
名师讲坛 · 素养提升
函数三大性质的综合应用
①直线x=-6是函数y=f(x)的图象的一条对称轴;②函数y=f(x)在[-9,-6]上为增函数;③函数y=f(x)在[-9,9]上有四个零点.其中所有正确命题的序号为_______.
函数的奇偶性、周期性及单调性,在高考中常常将它们综合在一起命题,解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.
〔变式训练3〕已知f(x)的定义域为R,其函数图象关于直线x=-3对称,且f(x+3)=f(x-3),若当x∈[0,3]时,f(x)=2x+1,则下列结论正确的是_________.(填序号)①f(x)为偶函数;②f(x)在[-6,-3]上单调递减;③f(x)关于直线x=3对称;④f(100)=5.
新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第8讲函数与方程课件: 这是一份新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第8讲函数与方程课件,共60页。PPT课件主要包含了第八讲函数与方程,知识梳理·双基自测,名师讲坛·素养提升,考点突破·互动探究,fx=0,fafb<0,fc=0,fafb0,一分为二,〔变式训练1〕等内容,欢迎下载使用。
新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第9讲函数模型及其应用课件: 这是一份新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第9讲函数模型及其应用课件,共53页。PPT课件主要包含了知识梳理·双基自测,名师讲坛·素养提升,考点突破·互动探究,题组三走向高考,〔变式训练2〕等内容,欢迎下载使用。
新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第7讲函数的图象课件: 这是一份新教材适用2024版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第7讲函数的图象课件,共60页。PPT课件主要包含了第七讲函数的图象,知识梳理·双基自测,名师讲坛·素养提升,考点突破·互动探究,平移变换,伸缩变换,-fx,f-x,-f-x,y=x等内容,欢迎下载使用。