终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2023年高考真题——理科数学(全国乙卷)(Word版附解析)

    立即下载
    加入资料篮
    2023年高考真题——理科数学(全国乙卷)(Word版附解析)第1页
    2023年高考真题——理科数学(全国乙卷)(Word版附解析)第2页
    2023年高考真题——理科数学(全国乙卷)(Word版附解析)第3页
    还剩23页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年高考真题——理科数学(全国乙卷)(Word版附解析)

    展开

    这是一份2023年高考真题——理科数学(全国乙卷)(Word版附解析),共26页。试卷主要包含了选择题,填空题,解答题,选做题等内容,欢迎下载使用。
    2023年普通高等学校招生全国统一考试(全国乙卷)理科数学一、选择题1. ,则    A.  B.  C.  D. 【答案】B【解析】【分析】由题意首先计算复数的值,然后利用共轭复数的定义确定其共轭复数即可.【详解】由题意可得.故选:B.2. 设集合,集合,则    A.  B. C.  D. 【答案】A【解析】【分析】由题意逐一考查所给的选项运算结果是否为即可.【详解】由题意可得,则,选项A正确;,则,选项B错误;,则,选项C错误;,则,选项D错误;故选:A.3. 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为(      A. 24 B. 26 C. 28 D. 30【答案】D【解析】【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.【详解】如图所示,在长方体中,为所在棱上靠近点的三等分点,为所在棱的中点,则三视图所对应的几何体为长方体去掉长方体之后所得的几何体,  该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:.故选:D.4. 已知是偶函数,则    A.  B.  C. 1 D. 2【答案】D【解析】【分析】根据偶函数的定义运算求解.【详解】因为为偶函数,则又因为不恒为0,可得,即,即,解得.故选:D.5. O为平面坐标系坐标原点,在区域内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为(    A.  B.  C.  D. 【答案】C【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域表示以圆心,外圆半径,内圆半径的圆环,则直线的倾斜角不大于的部分如阴影所示,在第一象限部分对应的圆心角结合对称性可得所求概率.故选:C.    6. 已知函数在区间单调递增,直线为函数的图像的两条对称轴,则    A.  B.  C.  D. 【答案】D【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入即可得到答案.【详解】因为在区间单调递增,所以,且,则时,取得最小值,则,不妨取,则故选:D.7. 甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有(    A. 30 B. 60 C. 120 D. 240【答案】C【解析】【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有种,根据分步乘法公式则共有种,故选:C.8. 已知圆锥PO的底面半径为O为底面圆心,PAPB为圆锥的母线,,若的面积等于,则该圆锥的体积为(    A.  B.  C.  D. 【答案】B【解析】【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】中,,而,取中点,连接,有,如图,,由的面积为,得解得,于是所以圆锥的体积.故选:B9. 已知为等腰直角三角形,AB为斜边,为等边三角形,若二面角,则直线CD与平面ABC所成角的正切值为(    A.  B.  C.  D. 【答案】C【解析】【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.【详解】的中点,连接,因为是等腰直角三角形,且为斜边,则有是等边三角形,则,从而为二面角的平面角,即显然平面,于是平面,又平面因此平面平面,显然平面平面直线平面,则直线在平面内的射影为直线从而为直线与平面所成的角,令,则,在中,由余弦定理得:由正弦定理得,即显然是锐角,所以直线与平面所成的角的正切为.故选:C10. 已知等差数列的公差为,集合,若,则    A. 1 B.  C. 0 D. 【答案】B【解析】【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.【详解】依题意,等差数列中,显然函数的周期为3,而,即最多3个不同取值,又则在中,于是有,即有,解得所以.故选:B11. AB为双曲线上两点,下列四个点中,可为线段AB中点的是(    A.  B.  C.  D. 【答案】D【解析】【分析】根据点差法分析可得,对于ABD:通过联立方程判断交点个数,逐项分析判断;对于C:结合双曲线的渐近线分析判断.【详解】,则的中点可得在双曲线上,则,两式相减得所以.对于选项A: 可得,则联立方程,消去y此时所以直线AB与双曲线没有交点,故A错误;对于选项B:可得,则联立方程,消去y此时所以直线AB与双曲线没有交点,故B错误;对于选项C:可得,则由双曲线方程可得,则为双曲线的渐近线,所以直线AB与双曲线没有交点,故C错误;对于选项D,则联立方程,消去y此时,故直线AB与双曲线有交两个交点,故D正确;故选:D.12. 已知的半径为1,直线PA相切于点A,直线PB交于BC两点,DBC的中点,若,则的最大值为(    A.  B. C  D. 【答案】A【解析】【分析】由题意作出示意图,然后分类讨论,利用平面向量的数量积定义可得,或然后结合三角函数的性质即可确定的最大值.【详解】如图所示,,则由题意可知:由勾股定理可得当点位于直线异侧时,设则:,则时,有最大值.当点位于直线同侧时,设则:,则时,有最大值.综上可得,的最大值为.故选:A【点睛】本题的核心在于能够正确作出示意图,然后将数量积的问题转化为三角函数求最值的问题,考查了学生对于知识的综合掌握程度和灵活处理问题的能力.二、填空题13. 已知点在抛物线C上,则AC的准线的距离为______.【答案】【解析】【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为,最后利用点的坐标和准线方程计算点的准线的距离即可.【详解】由题意可得:,则,抛物线的方程为准线方程为,点的准线的距离为.故答案为:.14. xy满足约束条件,则的最大值为______.【答案】8【解析】【分析】作出可行域,转化为截距最值讨论即可.【详解】作出可行域如下图所示:,移项得联立有,解得,显然平移直线使其经过点,此时截距最小,则最大,代入得故答案为:8.  15. 已知为等比数列,,则______.【答案】【解析】【分析】根据等比数列公式对化简得,联立求出,最后得.【详解】的公比为,则,显然,即,则,因为,则,则,则故答案为:.16. ,若函数上单调递增,则a的取值范围是______.【答案】【解析】【分析】原问题等价于恒成立,据此将所得的不等式进行恒等变形,可得,由右侧函数的单调性可得实数的二次不等式,求解二次不等式后可确定实数的取值范围.【详解】由函数的解析式可得在区间上恒成立,,即在区间上恒成立,,而,故,故结合题意可得实数的取值范围是.故答案为:.三、解答题17. 某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为.试验结果如下:试验序号12345678910伸缩率545533551522575544541568596548伸缩率536527543530560533522550576536,记的样本平均数为,样本方差为12判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)【答案】1    2认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【解析】【分析】1)直接利用平均数公式即可计算出,再得到所有的值,最后计算出方差即可;2)根据公式计算出的值,和比较大小即可.【小问1详解】 的值分别为: 【小问2详解】由(1)知:,故有,所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.18. 中,已知.12DBC上一点,且,求的面积.【答案】1    2.【解析】【分析】(1)首先由余弦定理求得边长的值为,然后由余弦定理可得,最后由同角三角函数基本关系可得(2)由题意可得,则,据此即可求得的面积.【小问1详解】由余弦定理可得:.【小问2详解】由三角形面积公式可得.19. 如图,在三棱锥中,BPAPBC的中点分别为DEO,点FAC上,.1证明:平面2证明:平面平面BEF3求二面角的正弦值.【答案】1证明见解析;    2证明见解析;    3.【解析】【分析】1)根据给定条件,证明四边形为平行四边形,再利用线面平行的判定推理作答.2)由(1)的信息,结合勾股定理的逆定理及线面垂直、面面垂直的判定推理作答.3)由(2)的信息作出并证明二面角的平面角,再结合三角形重心及余弦定理求解作答.【小问1详解】连接,设,则解得,则的中点,由分别为的中点,于是,即,则四边形为平行四边形,,又平面平面所以平面.    【小问2详解】由(1)可知,则,得因此,则,有平面则有平面,又平面,所以平面平面.【小问3详解】过点于点,设,得,且又由(2)知,,则为二面角的平面角,因为分别为的中点,因此的重心,即有,又,即有,解得,同理得于是,即有,则从而中,于是所以二面角的正弦值为.  20. 已知椭圆的离心率是,点上.1的方程;2过点的直线交两点,直线轴的交点分别为,证明:线段的中点为定点.【答案】1    2证明见详解【解析】【分析】1)根据题意列式求解,进而可得结果;2)设直线的方程,进而可求点的坐标,结合韦达定理验证为定值即可.【小问1详解】由题意可得,解得所以椭圆方程为.【小问2详解】由题意可知:直线的斜率存在,设联立方程,消去y得:,解得可得因为,则直线,解得,即,同理可得所以线段的中点是定点.【点睛】方法点睛:求解定值问题的三个步骤1)由特例得出一个值,此值一般就是定值;2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;3)得出结论.21. 已知函数.1时,求曲线在点处的切线方程;2是否存在ab,使得曲线关于直线对称,若存在,求ab的值,若不存在,说明理由.3存在极值,求a的取值范围.【答案】1    2存在满足题意,理由见解析.    3.【解析】【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)首先求得函数的定义域,由函数的定义域可确定实数的值,进一步结合函数的对称性利用特殊值法可得关于实数的方程,解方程可得实数的值,最后检验所得的是否正确即可;(3)原问题等价于导函数有变号的零点,据此构造新函数,然后对函数求导,利用切线放缩研究导函数的性质,分类讨论三中情况即可求得实数的取值范围.【小问1详解】时,据此可得函数在切线方程为.【小问2详解】由函数的解析式可得函数的定义域满足,即函数的定义域为定义域关于直线对称,由题意可得由对称性可知可得,则,解得经检验满足题意,故.即存在满足题意.【小问3详解】由函数的解析式可得在区间存在极值点,则在区间上存在变号零点;在区间存在极值点,等价于在区间上存在变号零点,时,在区间上单调递减,此时在区间上无零点,不合题意;时,由于,所以在区间上单调递增,所以在区间上单调递增,所以在区间上无零点,不符合题意;时,由可得时,单调递减,时,单调递增,的最小值为,则函数在定义域内单调递增,据此可得恒成立,,则时,单调递增,时,单调递减,,即(取等条件为)所以,且注意到根据零点存在性定理可知:在区间上存在唯一零点.时,单调减,时,单调递增,所以.,则单调递减,注意到故当时,,从而有所以,所以所以函数在区间上存在变号零点,符合题意.综合上面可知:实数得取值范围是.【点睛】(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)根据函数的极值()求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.四、选做题【选修4-4】(10分)22. 在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线为参数,.1写出的直角坐标方程;2若直线既与没有公共点,也与没有公共点,求的取值范围.【答案】1    2【解析】【分析】1)根据极坐标与直角坐标之间的转化运算求解,注意的取值范围;2)根据曲线的方程,结合图形通过平移直线分析相应的临界位置,结合点到直线的距离公式运算求解即可.【小问1详解】因为,即,可得整理得,表示以为圆心,半径为1的圆,又因为,则,则.【小问2详解】因为为参数,),整理得,表示圆心为,半径为2,且位于第二象限的圆弧,如图所示,若直线,则,解得若直线,即相切,则,解得若直线均没有公共点,则即实数的取值范围.  【点睛】【选修4-5】(10分)23. 已知.1求不等式的解集;2在直角坐标系中,求不等式组所确定的平面区域的面积.【答案】1    26.【解析】【分析】1)分段去绝对值符号求解不等式作答.2)作出不等式组表示的平面区域,再求出面积作答.【小问1详解】依题意,不等式化为:,得无解;解,得,解,得,因此所以原不等式的解集为:【小问2详解】作出不等式组表示的平面区域,如图中阴影  ,解得,由, 解得,又所以的面积.
     
     

    相关试卷

    2023年高考真题——理科数学(全国乙卷)解析版:

    这是一份2023年高考真题——理科数学(全国乙卷)解析版,共25页。

    2023年高考真题——理科数学(全国乙卷) Word版无答案:

    这是一份2023年高考真题——理科数学(全国乙卷) Word版无答案,共5页。试卷主要包含了选择题,填空题,解答题,选做题等内容,欢迎下载使用。

    2023年高考真题(全国乙卷)数学(理科)试卷+解析:

    这是一份2023年高考真题(全国乙卷)数学(理科)试卷+解析,文件包含2023年高考真题全国乙卷数学理科解析docx、2023年高考真题全国乙卷数学理科试卷docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map