年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    精品解析:广东省珠海市高一下学期期末数学试题(A组)

    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      精品解析:广东省珠海市高一下学期期末数学试题(A组)(原卷版).docx
    • 练习
      精品解析:广东省珠海市高一下学期期末数学试题(A组)(解析版).docx
    精品解析:广东省珠海市高一下学期期末数学试题(A组)(原卷版)第1页
    精品解析:广东省珠海市高一下学期期末数学试题(A组)(原卷版)第2页
    精品解析:广东省珠海市高一下学期期末数学试题(A组)(解析版)第1页
    精品解析:广东省珠海市高一下学期期末数学试题(A组)(解析版)第2页
    精品解析:广东省珠海市高一下学期期末数学试题(A组)(解析版)第3页
    还剩3页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    精品解析:广东省珠海市高一下学期期末数学试题(A组)

    展开

    这是一份精品解析:广东省珠海市高一下学期期末数学试题(A组),文件包含精品解析广东省珠海市高一下学期期末数学试题A组解析版docx、精品解析广东省珠海市高一下学期期末数学试题A组原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
    珠海市第二学期期末学生学业质量监测高一数学试题一、单选题(本大题共10小题,每小题5分,共50分,在每小题列出的四个选项中,只有一项是符合题目要求的,请将正确的选项填涂在答题卡上)1. 已知集合,则    A.  B.  C.  D. 【答案】C【解析】【分析】利用集合的交集运算进行求解.【详解】因为所以.故选:C.2. 不等式的解集是(    A.  B.  C.  D. ,或【答案】C【解析】【分析】根据一元二次不等式的解法计算可得;【详解】解:由,解得,即不等式的解集为故选:C3. 已知复数满足,其中为虚数单位,则    A.  B.  C.  D. 【答案】A【解析】【分析】利用复数的除法直接求出z.【详解】因为,所以.故选:A4. 下列函数最小正周期为的是(    A.  B. C.  D. 【答案】B【解析】【分析】根据三角函数的性质计算可得;【详解】解:对于A的最小正周期,故A错误;对于B的最小正周期,故B正确;对于C的最小正周期,故C错误;对于D的最小正周期,故D错误;故选:B5. 下列选项正确的是(    A.  B. C.  D. 【答案】C【解析】【分析】利用对数函数单调性逐项判断可得答案.【详解】对于A,因为是单调递增函数,所以,故A错误;对于B,因为是单调递减函数,所以,故B错误;对于C,因为,所以,故C正确;对于D,当时,是单调递减函数,当时,是单调递增函数,所以当时,,当时,,故D错误.故选:C.6. 一个棱长为2的正方体,其外接球的体积为(    A  B.  C.  D. 【答案】D【解析】【分析】依题意正方体的外接球的直径即为正方体的体对角线,利用勾股定理求出直径,再根据体积公式计算可得;【详解】解:因为正方体的棱长为,所以其体对角线为所以外接球的直径即为,即外接球的半径所以外接球的体积故选:D7. 正四棱台的上、下底面边长分别为,侧棱长为,则棱台的侧面积为(    A.  B.  C.  D. 【答案】B【解析】【分析】先求棱台的斜高,然后利用侧面积公式进行求解.【详解】由题意,正四棱台的侧面是等腰梯形,且其上、下底面边长分别为,腰长为,所以斜高为.所以侧面积为().故选:B.8. 已知平行四边形三个顶点分别对应的复数为,则第四个顶点对应的复数为(    A.  B.  C.  D. 【答案】D【解析】【分析】先利用复数的几何意义写出各点的坐标,再利用平行四边形构造相等向量列方程组求解.【详解】由题知,,设..因为为平行四边形,所以.,解得所以点对应的复数为.故选:D.9. 是两个不同的平面,lm是两条不同的直线,则下列命题中正确的是(    A. ,则B. ,则C. ,则D. ,且l所成的角和m所成的角相等,则【答案】B【解析】【分析】举反例可判断AD;由面面平行的判断可判断B;由线面的位置关系可判断C.【详解】对于A,在如下图正方体中, ,但不垂直,所成角为,故A错误;
     对于B ,则,故B正确;对于C ,则或者,故C错误;对于D,如下图,在正方体中,,且l所成的角和m所成的角相等为,但则不平行,故D错误.
     故选:B.10. 端午佳节,人们有包粽子和吃粽子的习俗,粽子主要分为南北两大派系,地方细分特色鲜明,且形状各异,裹蒸粽是广东肇庆地区最为出名的粽子,是用当地特有的冬叶、水草包裹糯米、绿豆、猪肉、咸蛋黄等蒸制而成的金字塔形的粽子,现将裹蒸粽看作一个正四面体,其内部的咸蛋黄看作一个球体,那么,当咸蛋黄的体积为时,该裹蒸粽的高的最小值为(    A. 4 B. 6 C. 8 D. 10【答案】A【解析】【分析】要使正四面体的高最小,当且仅当球与正四面体相内切,内切球的半径为,根据球的体积求出,再根据等体积法求出【详解】解:要使正四面体的高最小,当且仅当球与正四面体相内切,设正四面体的棱长为,高为,内切球的半径为,则,解得如图正四面体中,令的中点,为底面三角形的中心,则底面所以,即.故选:A二、多选题(本大题共2小题,每小题5分,共10分,在每小题给出的选项中,有多项符合题目要求,请将符合题目要求的选项填涂在答题卡上,全部选对的得5分,有选错的得0分,部分选对的得2.11. 所在平面内的一点,且,则下列结论不正确的是(    A.  B. C.  D. 【答案】ACD【解析】【分析】由题设知中点,数形结合并根据向量加法、数乘的几何意义判断各项的正误即可.【详解】知:中点,B正确,AD错误;C错误;故选:ACD12. 如图,在四棱锥的平面展开图中,四边形为正方形,.分别为的中点.则在原四棱锥中,下列结论正确的是(    A. 平面平面 B. 平面C. 平面 D. 平面平面【答案】ABC【解析】【分析】对于A:利用面面平行的判定定理证明平面平面;对于B:利用线面平行的判定定理证明平面;对于C:利用垂线面直的判定定理证明平面;对于D:由平面平面可判断平面平面不成立.【详解】如图示,在四棱锥.对于A分别为的中点,所以.ABCDABCD,所以ABCD同理:ABCD.因为EFGHEFGH,所以平面平面.A正确;对于B, PADPAD,所以平面.B正确;对于C:在四棱锥中,底面四边形为正方形,.所以四棱锥为正四棱锥.连接AC,BD交于点O,则,所以四边形为正方形,所以.PO,BD交于点O,所以平面.C正确;对于D:因为平面,所以平面平面.所以平面平面不成立.D错误.故选:ABC.三、填空题(本大题共4小题,每小题5分,共20分,将答案填写在答题卡上.13. 是定义在上的奇函数,且,则___________.【答案】1【解析】【分析】根据奇函数的性质求解即可.【详解】因为是定义在上的奇函数,所以 因为,所以所以.故答案为:1.14. 已知点,则___________.【答案】-15.【解析】【分析】直接利用向量的坐标表示,再进行数量积运算即可.【详解】因为,所以所以.故答案为:-15.15. 水平放置的平行四边形,用斜二测画法画出它的直观图,如图所示.此直观图恰好是个边长为的正方形,则原平行四边形的面积为___________.
     【答案】【解析】【分析】根据斜二测法的画图原则求出原平行四边形的边长和高,进而求面积.【详解】由题设,,故原平行四边形中上下底的高平行四边形所以原平行四边形的面积为.故答案为:16. 如图,某款酒杯的容器部分为圆锥,且该圆锥的轴截面是面积为的正三角形,若在该酒杯内放置一个圆柱形冰块,要求冰块高度不超过酒杯口高度,则圆柱冰块的侧面积的最大值为___________.【答案】【解析】【分析】设该圆锥的轴截面正三角形的边长为a先求出a=8. 设圆柱的底面圆半径为x,高为h,建立出侧面积的函数,利用二次函数求出最大值.【详解】设该圆锥的轴截面正三角形的边长为a由该圆锥轴截面的面积为,,所以a=8,所以该圆锥底面圆半径为4,高为.设圆锥中放置的圆柱的底面圆半径为x,高为h其中.如下图所示:可得:,即,所以.所以圆柱冰块的侧面积为.由二次函数的性质可得: 时,最大.故答案为:四、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17. 已知.1,求实数的值;2时,若垂直,求实数的值.【答案】1-2    22【解析】【分析】1)利用向量平行列方程即可求解;(2)先表示出,利用向量垂直列方程即可求解.【小问1详解】因为,且所以,解得:.【小问2详解】时,,所以.因为垂直,所以,解得:.18. 已知,其中.12,求的值.【答案】1    2【解析】【分析】1)根据同角的关系即可求解;2)根据正弦的和角公式即可求解.【小问1详解】可得,因为,故,进而【小问2详解】,故19. 如图,在三棱柱中,,点的中点.1求证:平面2若侧面为菱形,求证:平面.【答案】1证明见解析;    2证明见解析.【解析】【分析】1)连接,连接,利用中位线性质有,根据线面平行的判定证结论;2)线面垂直的判定有,根据线面垂直、菱形的性质可得,最后由线面垂直的判定证结论.【小问1详解】连接,连接为三棱柱,则为平行四边形,所以中点,又的中点,故在△所以平面.【小问2详解】,而所以,又,则由侧面为菱形,故,故平面.20. 如图,在中,,点边上,.1的长度; 2,求的长度.【答案】1    2【解析】【分析】1)利用正弦定理即可求出;(2)直接用余弦定理求出.【小问1详解】中,.由正弦定理得:,即,解得:.【小问2详解】中,.由余弦定理得:.21. 已知,且相互垂直.1求向量与向量的夹角的大小;2.【答案】1    2.【解析】【分析】1)由,结合已知即可求夹角的大小;2)利用向量数量积的运算律有,即可求模.【小问1详解】由题意,所以,可得,而所以.【小问2详解】所以.22. 如图,在长方体中,.1求直线和直线所成的角的大小;2求直线与平面所成的角的大小.【答案】1    2【解析】【分析】1)由于,所以为直线和直线所成的角,然后在中求解即可,2)由于平面,所以为直线与平面所成的角,然后在中求解【小问1详解】在长方体中,,则,因为所以为直线和直线所成的角,中,因为为锐角,所以所以直线和直线所成的角的大小为【小问2详解】连接,在长方体中,,则平面所以为直线与平面所成的角,中,因为为锐角,所以
     

    相关试卷

    广东省珠海市香樟中学2022-2023学年高一下学期期末数学试题(原卷版+解析版):

    这是一份广东省珠海市香樟中学2022-2023学年高一下学期期末数学试题(原卷版+解析版),共25页。

    广东省珠海市香樟中学2022-2023学年高一下学期期末数学试题(解析版):

    这是一份广东省珠海市香樟中学2022-2023学年高一下学期期末数学试题(解析版),共20页。

    精品解析:广东省中山市高一下学期期末数学试题:

    这是一份精品解析:广东省中山市高一下学期期末数学试题,文件包含精品解析广东省中山市高一下学期期末数学试题解析版docx、精品解析广东省中山市高一下学期期末数学试题原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map