![专题09 高频考点专题:分式运算中的技巧(原卷版)(4大技巧)第1页](http://img-preview.51jiaoxi.com/2/3/14390820/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题09 高频考点专题:分式运算中的技巧(原卷版)(4大技巧)第2页](http://img-preview.51jiaoxi.com/2/3/14390820/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题09 高频考点专题:分式运算中的技巧(解析版)(4大技巧)第1页](http://img-preview.51jiaoxi.com/2/3/14390820/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题09 高频考点专题:分式运算中的技巧(解析版)(4大技巧)第2页](http://img-preview.51jiaoxi.com/2/3/14390820/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题09 高频考点专题:分式运算中的技巧(解析版)(4大技巧)第3页](http://img-preview.51jiaoxi.com/2/3/14390820/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学苏科版八年级下册10.1 分式优秀课后练习题
展开
这是一份初中数学苏科版八年级下册10.1 分式优秀课后练习题,文件包含专题09高频考点专题分式运算中的技巧解析版4大技巧docx、专题09高频考点专题分式运算中的技巧原卷版4大技巧docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
专题09 高频考点专题:分式运算中的技巧【考点导航】目录【典型例题】【考点一 按常规步骤运算】【考点二 先约分再化简】【考点三 混合运算中灵活运用分配律】【考点四 分式化简求值注意整体代入】【典型例题】【考点一 按常规步骤运算】例题:(2023春·江苏南京·九年级南京市竹山中学校考阶段练习)计算:.【答案】【分析】直接根据分式的混合运算法则计算即可.【详解】解:.【点睛】本题主要考查了分式的混合运算,灵活运用分式的混合运算法则成为解答本题的关键.【变式训练】1.(2023春·江苏·八年级专题练习)计算的结果是( )A. B. C. D.【答案】A【分析】根据分式减法运算法则直接求解即可得到答案.【详解】解:,故选:A.【点睛】本题考查分式减法运算,涉及因式分解、通分、约分等知识,熟练掌握分式减法运算法则是解决问题的关键.2.(2023秋·湖南益阳·八年级校联考期末)化简的结果为( )A. B. C. D.【答案】A【分析】根据分式的除法运算法则即可求解.【详解】解:,故选:.【点睛】本题主要考查分式的运算,掌握分式的除法运算法则是解题的关键.3.(2023春·八年级课时练习)计算:_____.【答案】【分析】根据分式混合运算法则进行计算即可.【详解】解:.故答案为:.【点睛】本题主要考查了分式混合运算,解题的关键是熟练掌握分式混合运算法则,准确计算.4.(2023秋·河北邯郸·八年级统考期末)化简分式:的最后结果是___________.【答案】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果即可.【详解】解:.故答案为:.【点睛】此题考查了分式的加减乘除混合运算,熟练掌握运算法则是解本题的关键.5.(2023·陕西西安·西北大学附中校考三模)化简:.【答案】【分析】先将括号内的部分通分,再利用同分母分式减法计算,将除法转化为乘法,再约分计算.【详解】解:【点睛】本题考查了分式的混合运算,解题的关键是掌握通分和约分的方法.6.(2023秋·江苏盐城·八年级校考期末)先化简,再求值:,其中.【答案】,【分析】先根据分式的运算法则把所给代数式化简,再把代入计算.【详解】解:原式当时,原式.【点睛】本题考查了分式的计算和化简,解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简. 【考点二 先约分再化简】例题:(2023春·七年级单元测试)化简:÷=_____.【答案】【分析】先进行因式分解,把除法变成乘法,进行约分即可.【详解】解:故答案为:【点睛】此题考查了分式的除法运算,熟练掌握除法法则是解题的关键.【变式训练】1.(2022秋·广东河源·八年级校考期末)计算:_______.【答案】【分析】根据分式的乘法计算法则求解即可.【详解】解: ,故答案为:.【点睛】本题主要考查了分式的乘法,熟知相关计算法则是解题的关键.2.(2023秋·山东聊城·八年级统考期末)计算的结果是______.【答案】【分析】先对各项进行因式分解,再将除法变为乘法,最后化简即可.【详解】解:故答案为:.【点睛】本题考查了分式的除法运算,正确进行因式分解是解题的关键.3.(2023春·江苏·八年级专题练习)化简的结果是________.【答案】【分析】根据分式的乘除运算法则即可求出答案.【详解】解:故答案为 :【点睛】本题考查分式的混合运算,解题的关键是熟练运用分式乘除运算,本题属于基础题型.4.(2023·辽宁营口·校考一模)计算:【答案】【分析】先将各项的分子分母进行因式分解,把除法改写为乘法,再根据分式混合运算的运算顺序和运算法则,进行计算即可.【详解】解:原式.【点睛】本题主要考查了分式的混合运算,解题的关键是熟练掌握分式混合运算的运算法则和运算顺序.5.(2023·福建·福建省福州第十九中学校考一模)先化简,再求值:,其中.【答案】原式;2【分析】先对的分子进行提公因式,对分母进行因式分解,即 ,去括号合并即可.【详解】解:所以原式因为化简后的式子不含a所以与a取值无关,则原式值.【点睛】本题考查了分式的化简求值,掌握分式的运算法则和运算顺序是解决本题的关键.6.(2023春·湖南长沙·八年级校考阶段练习)先化简,当时,取适当的整数并求出代数式的值.【答案】;【分析】根据,先化除为乘,然后根据分式的运算法则化简,再代入求值即可.【详解】,∵,∴且,∵,∴,∴当,.【点睛】本题考查分式的化简求值,解题的关键是掌握分式的运算法则. 【考点三 混合运算中灵活运用分配律】例题:(2023春·辽宁沈阳·九年级沈阳市第一三四中学校考开学考试)化简:______.【答案】m【分析】原式括号中两项通分并利用同分母分式的减法法则计算、约分即可得到结果.【详解】解:=(m+1)-1=m故答案为:m【点睛】本题主要考查了分式的混合运算,熟练掌握运算法则是解题的关键.【变式训练】1.(2023·全国·九年级专题练习)的结果是_________.【答案】-2【分析】先把括号内通分,再把除法运算化为乘法运算,然后进行约分即可.【详解】解:=•(a+1)(a-1)=a-1-a-1=-2.故答案为:-2.【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.2.(2021秋·内蒙古锡林郭勒盟·九年级校考阶段练习)化简:=__________________【答案】【分析】先运用分式的加减法法则计算括号内的,再运用分式除法法则计算即可.【详解】解:原式====.【点睛】本题考查分式混合运算,熟练掌握分式运算法则是解题的关键.3.(2022·黑龙江绥化·统考三模)当时,代数式的值为______.【答案】##-0.5【分析】先将括号里的异分母分式相加减转化为同分母分式相加减,再算分式的乘除进行化简,再代入求值即可.【详解】,当时,原式,故答案为:.【点睛】本题考查了分式的化简求值,熟练掌握知识点是解题的关键.4.(2023春·八年级课时练习)化简求值:, 其中.【答案】,1【分析】由分式的加减乘除运算法则进行化简,然后把代入计算,即可求出答案.【详解】解:原式;∵,∴原式;【点睛】本题考查了分式的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.5.(2023春·八年级课时练习)先化简再求值:,在,,中选择合适的的值代入并求值.【答案】,时,原式=【分析】根据分式的加法计算括号内的,再计算乘方,根据分式的性质化简,最后根据分式有意义的条件,将代入化简结果即可求解.【详解】解:原式,,所以,原式.【点睛】本题考查了分式的化简求值分,分式有意义的条件,掌握分式的混合运算是解题的关键.6.(2023·甘肃陇南·校考一模)先化简,再从,,0,1,2中选一个合适的数作为x的值代入求值,【答案】,或【详解】解:=÷==,∵且,∴x只能取或,当时,原式=.(或当时,原式=)【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则. 【考点四 分式化简求值注意整体代入】例题:(2023春·甘肃定西·八年级统考期末)当时,计算的值为( )A.2023 B. C. D.【答案】A【分析】根据分式的加减乘除混合运算法则先化简,再根据,即可得出答案.【详解】解:,∵,∴,故选:A.【点睛】本题考查分式的加减乘除混合运算,正确得出化简结果是解题的关键.【变式训练】1.(2023春·北京顺义·九年级校考阶段练习)如果,那么代数式的值为( )A.6 B.3 C.1 D.【答案】B【分析】原式先将括号内的进行通分,因式分解后进行约分得到,代入条件可得结论.【详解】解:∵,∴=====3故选:B【点睛】本题考查分式的混合运算,解题的关键是掌握分式的运算法则.2.(2023秋·云南红河·八年级统考期末)已知,则的值为______.【答案】##【分析】先将括号里面的通分,将除法转化为乘法,约分化简,代入的值,即可求解.【详解】原式故答案为:.【点睛】本题考查了分式化简求值,正确化简分式是解题的关键.3.(2023·江苏盐城·校联考模拟预测)先化简,再求值:,其中【答案】,【分析】先把分式的化简,再整体代入求值.【详解】解:,当时,原式.【点睛】本题考查了分式的化简求值,掌握因式分解是解题的关键.4.(2023·江苏苏州·苏州中学校考一模)化简求值:已知:,求代数式的值.【答案】;1【分析】先利用异分母分式加减法法则计算括号里,再算括号外,然后把代入化简后的式子进行计算即可解答.【详解】解:,∵,∴,∴原式.【点睛】本题考查了分式的化简求值,准确熟练地进行计算是解题的关键.5.(2023春·江苏苏州·七年级苏州市胥江实验中学校校考阶段练习)先化简,再求值:,其中.【答案】;【分析】先根据分式混合运算法则进行化简,然后再整体代入求值即可.【详解】解:,∵,∴,∴.【点睛】本题主要考查了分式化简求值,解题的关键是熟练掌握分式混合运算法则,准确计算.
相关试卷
这是一份专题08 分式的加减法和乘除法(9大考点)-八年级数学下册重难点专题提优训练(苏科版),文件包含专题08分式的加减法和乘除法解析版重点突围docx、专题08分式的加减法和乘除法原卷版重点突围docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
这是一份专题07 分式及分式的基本性质(10大考点)-八年级数学下册重难点专题提优训练(苏科版),文件包含专题07分式及分式的基本性质解析版重点突围docx、专题07分式及分式的基本性质原卷版重点突围docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
这是一份专题04 解题技巧专题:特殊平行四边形中折叠、旋转问题(5大考点)-八年级数学下册重难点专题提优训练(苏科版),文件包含专题04解题技巧专题特殊平行四边形中折叠旋转问题解析版重点突围docx、专题04解题技巧专题特殊平行四边形中折叠旋转问题原卷版重点突围docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。