终身会员
搜索
    上传资料 赚现金
    2021北京十一学校高一(上)期中数学(教师版) 试卷
    立即下载
    加入资料篮
    2021北京十一学校高一(上)期中数学(教师版) 试卷01
    2021北京十一学校高一(上)期中数学(教师版) 试卷02
    2021北京十一学校高一(上)期中数学(教师版) 试卷03
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021北京十一学校高一(上)期中数学(教师版)

    展开
    这是一份2021北京十一学校高一(上)期中数学(教师版),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2021北京十一学校高一(上)期中

      

    (考试时间120分钟   满分100分)

    一、选择题:本大题共10小题,每小题3分,共30.在每小题给出的四个选项中,选出符合题目要求的一项.

    1. 已知集合,那么集合与集合的关系是(   

    A.  B.

    C.  D.

    2. 已知命题,都有,则命题的否定是(   

    A. ,使得 B. ,使得

    C. ,使得 D. ,使得

    3. 下列四个函数中,既是偶函数,又在上单调递减的是(   

    A.  B.  C.  D.

    4. 已知,且均不为,则下列不等式一定成立的是(   

    A.  B.  C.  D.

    5. 已知函数,则   

    A.  B.  C.  D.

    6. 下列函数中与表示的是同一函数的是(   

    A.  B.

    C.  D.

    7. 已知函数,则函数上有零点的(    )条件

    A. 充分而不必要 B. 必要而不充分 C. 充要 D. 即不充分也不必要

    8. 已知函数的大致图象如下图所示,则下列不等式一定成立的是(   

    A.  B.  C.  D.

    9. 设奇函数的定义域为,当时,是增函数,且,则不等式的解集是(   

    A.  B.

    C.  D. 以上结果都不对

    10. 已知定义在上的函数,其中表示不超过的最大整数,,给出下列四种说法:

    ,使得是一个增函数;

    ,使得是一个奇函数;

    ,使得在区间上有唯一零点.

    其中,正确的说法个数是(   

    A. 0 B. 1 C. 2 D. 3

    二、填空题:共8小题,每小题4分,共32.

    11. 已知函数,若,则______

    12. 函数的定义域是___________.

    13. 设集合________.

    14. 已知,函数零点在区间中,则的值是______.

    15. 已知方程的两根为,则________.

    16. 已知函数为定义在上的奇函数,若时,,则________.

    17. 已知在十一食堂,一碗面的成本为5元,售价为元,每天可以卖出碗,经过长期研究发现,二者之间存在函数关系,若要在食堂卖面的利润最高,则一碗面的售价应该定为________.

    18. 已知函数,若对于,,都有,则实数的取值范围为________.

    三、解答题:共4小题,共38.解答应写出文字说明、演算步骤或证明过程.

    19 1)已知集合,集合,求.

    2)已知,求的值.

    20. 某市出租车收费标准为:起步价13元(即实际行驶里程不超过3公里,按13元收费).此时计费里程与实际行驶里程相等,且规定计费里程不为零.实际行驶里程超过3公里后,超过3公里的部分,按每公里2.3元收费,其中不足1公里的部分按照1公里计算,此时计费里程为实际里程向上取整,例如,实际行驶里程4.6公里,则计费里程为5公里,设出租车收费总价为y(单位:元)实际行驶里程(单位:公里),计费里程为(单位:公里).

    1)建立出租车收费总价与计费里程的函数关系式;

    2)若出租车实际行驶里程6公里,则乘客需要付多少钱?

    3)若乘客实际付费超过20元但不超过40元,求取值范围.

    21. 已知定义在上的奇函数.

    1)求的值;

    2)用单调性的定义证明的单调性;

    3)若对于,不等式成立,求的取值范围.

    22. 若函数的定义域为,集合,若存在非零实数使得,都有,且,则称上的函数.

    1)已知函数,函数,判断是否为区间上的函数,并说明理由;

    2)已知函数,且是区间上的函数,求正整数的最小值;

    3)如果是定义域为上的奇函数,是否存在实数,使得当时,,且上的函数?若存在,求实数的取值范围;若不存在,请说明理由.

     


    参考答案

    一、选择题:本大题共10小题,每小题3分,共30.在每小题给出的四个选项中,选出符合题目要求的一项.

    1. 已知集合,那么集合与集合的关系是(   

    A.  B.

    C.  D.

    【答案】C

    【解析】

    【分析】化简集合即得解.

    【详解】由题得

    所以.

    故选:C

    2. 已知命题,都有,则命题的否定是(   

    A. ,使得 B. ,使得

    C. ,使得 D. ,使得

    【答案】C

    【解析】

    【分析】根据全称量词命题的否定的知识确定正确选项.

    【详解】原命题是全称量词命题,其否定是存在量词命题,注意到要否定结论,所以C选项符合.

    故选:C

    3. 下列四个函数中,既是偶函数,又在上单调递减的是(   

    A.  B.  C.  D.

    【答案】AB

    【解析】

    【分析】根据函数解析式直接判断各选项中函数的奇偶性及其在区间上的单调性,即可得出合适的选项.

    【详解】对于A选项,因为的定义域为,其定义域关于原点对称,且,所以函数为偶函数,又该函数在区间上单调递减,故A正确;

    对于B选项,因为的定义域为R,其定义域关于原点对称,且,所以函数偶函数,又该函数在区间上单调递减,故B正确;

    对于C选项,因为的定义域为,其定义域关于原点对称,函数是非奇非偶函数,故C不正确;

    对于D选项,因为的定义域为,其定义域关于原点对称,函数是非奇非偶函数,故D不正确.

    故选:AB.

    4. 已知,且均不为,则下列不等式一定成立的是(   

    A.  B.  C.  D.

    【答案】D

    【解析】

    【分析】利用特殊值排除错误选项,利用不等式的性质证明正确选项.

    【详解】时,A错误.

    时,B错误.

    时,C错误.

    由于,所以.由于,所以D正确.

    故选:D

    5. 已知函数,则   

    A.  B.  C.  D.

    【答案】D

    【解析】

    【分析】根据分段函数解析式求得的值.

    【详解】依题意

    .

    故选:D

    6. 下列函数中与表示的是同一函数的是(   

    A.  B.

    C.  D.

    【答案】A

    【解析】

    【分析】对于A,与中的x取值范围相同;

    对于B,与中的x可取任意值的取值范围不同;

    对于C,与中的x可取任意值的取值范围不同;

    对于D,与不是同一函数.

    【详解】对于A,并且其定义域为Rx取任意值时,与中的x取值范围相同,所以两个函数是同一函数,故A正确;

    对于B,定义域为,与中的x可取任意值的取值范围不同,所以两个函数不是同一函数,故B不正确;

    对于C,定义域为,与中的x可取任意值的取值范围不同,所以两个函数不是同一函数,故C不正确;

    对于D,所以与不是同一函数,故D不正确,

    故选:A.

    7. 已知函数,则函数上有零点的(    )条件

    A. 充分而不必要 B. 必要而不充分 C. 充要 D. 即不充分也不必要

    【答案】C

    【解析】

    【分析】结合充分、必要条件的判断方法来确定正确选项.

    【详解】依题意

    若函数上有零点,不等式组无解,所以,即.

    ,根据零点存在性定理可知:函数上有零点.

    所以函数上有零点的充要条件.

    故选:C

    8. 已知函数的大致图象如下图所示,则下列不等式一定成立的是(   

    A.  B.  C.  D.

    【答案】B

    【解析】

    【分析】如图,作出直线得到,即得解.

    【详解】

    如图,作出直线得到

    所以.

    故选:B

    9. 设奇函数的定义域为,当时,是增函数,且,则不等式的解集是(   

    A.  B.

    C.  D. 以上结果都不对

    【答案】C

    【解析】

    【分析】当时,不等式显然成立,再讨论当时不等式的解集,综合即得解.

    【详解】解: 奇函数上为增函数,1

    函数上为增函数,且1

    时,不等式显然成立,

    时,

    则不等式等价为时,,此时

    时,,此时

    综上不等式的解为

    故不等式的解集为:.

    故选:C

    10. 已知定义在上的函数,其中表示不超过的最大整数,,给出下列四种说法:

    ,使得是一个增函数;

    ,使得是一个奇函数;

    ,使得在区间上有唯一零点.

    其中,正确的说法个数是(   

    A. 0 B. 1 C. 2 D. 3

    【答案】B

    【解析】

    【分析】举反例,得到①②错误,计算满足有唯一零点,得到答案.

    【详解】,故错误;

    ,使得是一个奇函数,则,故假设不成立,错误;

    时,,当时,

    时,满足在区间上有唯一零点,正确.

    故选:B.

    二、填空题:共8小题,每小题4分,共32.

    11. 已知函数,若,则______

    【答案】

    【解析】

    【分析】

    根据题意,令,从而得到,得到为奇函数,整理得到,将代入求得的值.

    【详解】设

    为奇函数,

    ,即

    .

    【点睛】方法点睛:该题考查的是有关函数值的求解问题,解题方法如下:

    1)构造奇函数

    2)利用奇函数的性质得到,进而求得,得到结果.

    12. 函数的定义域是___________.

    【答案】## .

    【解析】

    【分析】由被开方数非负,可求出函数的定义域

    【详解】解:由,得,,解得

    所以函数的定义域为

    故答案为:.

    13. 设集合________.

    【答案】

    【解析】

    【分析】先求得,由此求得正确答案.

    详解

    所以.

    故答案为:

    14. 已知,函数的零点在区间中,则的值是______.

    【答案】

    【解析】

    【分析】先判断出函数R上单调递增,又由,可得出存在唯一的零点在区间中,由此可得答案.

    【详解】解:因为函数R上单调递增,又

    所以函数存在唯一的零点在区间中,

    又函数的零点在区间中,所以

    故答案为:.

    15. 已知方程的两根为,则________.

    【答案】

    【解析】

    【分析】由题得,化简再代入韦达定理即得解.

    【详解】由题得

    所以.

    故答案为:

    16. 已知函数为定义在上的奇函数,若时,,则________.

    【答案】

    【解析】

    【分析】根据奇函数的定义求得当时,函数的解析式,以及,可得函数的解析式.

    【详解】解:因为函数为定义在上的奇函数,所以,且

    时,

    所以当时,时,所以

    所以

    故答案.

    17. 已知在十一食堂,一碗面的成本为5元,售价为元,每天可以卖出碗,经过长期研究发现,二者之间存在函数关系,若要在食堂卖面的利润最高,则一碗面的售价应该定为________.

    【答案】##

    【解析】

    【分析】设食堂卖面的利润为S,有,根据二次函数的性质可求得答案.

    【详解】解:设食堂卖面的利润为S,则

    时,S取得最大值,

    故答案为:.

    18. 已知函数,若对于,,都有,则实数的取值范围为________.

    【答案】

    【解析】

    【分析】先求出,进而求出的解析式,,都有,等价于,有,对进行分类讨论 ,求出实数的取值范围

    【详解】因为,令,则

    所以,故

    所以

    ,都有

    等价于,有

    ,即   

    上单调递减,故

    所以,解得:

    结合得:

    ,即

    上单调递减,在单调递增;上单调递减,

    所以,化简:,解得

    结合得:

    ,即

    上单调递增,上单调递减,

    所以,解得

    结合得:

    ,即

    上单调递增,上单调递减,在上单调递增,且对称轴更靠近,故

    所以,解得

    结合求得:

    ,即

    上单调递增,上单调递减,在上单调递增,且对称轴更靠近,故

    所以,解得

    结合得:

       

    上单调递增,故

    所以,解得

    结合得:

    综上所述:

    故答案为:

    三、解答题:共4小题,共38.解答应写出文字说明、演算步骤或证明过程.

    19. 1)已知集合,集合,求.

    2)已知,求的值.

    【答案】(1;(2

    【解析】

    【分析】(1)计算,再计算交集得到答案.

    2)根据计算得到答案.

    【详解】(1

    ,故.

    2,则,故

    ,故.

    20. 某市出租车收费标准为:起步价13元(即实际行驶里程不超过3公里,按13元收费).此时计费里程与实际行驶里程相等,且规定计费里程不为零.实际行驶里程超过3公里后,超过3公里的部分,按每公里2.3元收费,其中不足1公里的部分按照1公里计算,此时计费里程为实际里程向上取整,例如,实际行驶里程4.6公里,则计费里程为5公里,设出租车收费总价为y(单位:元)实际行驶里程(单位:公里),计费里程为(单位:公里).

    1)建立出租车收费总价与计费里程的函数关系式;

    2)若出租车实际行驶里程为6公里,则乘客需要付多少钱?

    3)若乘客实际付费超过20元但不超过40元,求的取值范围.

    【答案】(1   

    219.9    3

    【解析】

    【分析】(1)分,分别求得函数的解析式可得答案;

    2)代入相应的函数解析式中可得答案;

    3)由已知得,求解可得答案.

    【小问1详解】

    解:由题意得,当时,

    时,

    所以.

    小问2详解】

    解:当时,所以.

    故乘客需要付19.9.

    【小问3详解】

    解:当乘客实际付费超过20元但不超过40元,即,又,所以,所以.

    所以的取值范围为.

    21. 已知定义在上的奇函数.

    1)求的值;

    2)用单调性的定义证明的单调性;

    3)若对于,不等式成立,求的取值范围.

    【答案】(1   

    2)单调递增,证明见解析.   

    3

    【解析】

    【分析】(1)由奇函数列方程,可求出a

    2)先判断R上单减,利用单调性的定义可证明;

    3)利用为奇函数及在R上单增,将不等式转化为对任意成立,利用分离参数法求出k的范围.

    【小问1详解】

    解:为定义域为的奇函数,

    ,所以.经检验成立

    【小问2详解】

    解:由(1)知:,则R上单增,下面进行证明:

    任取,且

    为增函数,

    R上单增.

    【小问3详解】

    解:为奇函数,

    对任意,不等式成立可化为:

    对任意成立,

    R上单增,不等式等价于对任意成立,即成立.

    ,只需

    ,所以

    所以的取值范围是.

    【点睛】方法点睛:(1)函数奇偶性的应用:一般用有时为了计算简便,我们可以对x取特殊值:

    2)证明函数的单调性一般用:定义法;导数法;

    3)分离参数法是解决恒(能)成立问题的常用方法.

    22. 若函数的定义域为,集合,若存在非零实数使得,都有,且,则称上的函数.

    1)已知函数,函数,判断是否为区间上的函数,并说明理由;

    2)已知函数,且是区间上的函数,求正整数的最小值;

    3)如果是定义域为上的奇函数,是否存在实数,使得当时,,且上的函数?若存在,求实数的取值范围;若不存在,请说明理由.

    【答案】(1)函数是区间上的函数,不是,理由见解析;   

    21    3)存在,.

    【解析】

    【分析】(1)利用上的函数的定义检验函数即得解;

    2)化简对于成立,求函数的最值即得解;

     

    3)利用得到,再作出函数的图象分析即得解.

    【小问1详解】

    解:对于函数,,所以函数是区间上的函数.

    对于函数函数,,,

    ,所以函数是区间上的函数.

    小问2详解】

    解:因为函数,,是区间上的函数,

    所以对于成立,

    所以对于成立,

    因为是增函数(增函数+增函数=增函数),

    所以,所以正整数的最小值为1.

    小问3详解】

    解:由题得,所以.

    时,

    由于函数是奇函数,所以函数的图象如图所示,

    因为上的函数,

    所以对于成立,

    所以,因为,所以.

    相关试卷

    2023北京八一学校高一(上)期中数学(教师版): 这是一份2023北京八一学校高一(上)期中数学(教师版),文件包含第1课时初步认识比热容pptx、加热水和煤油mp4、比较水沙石的比热容mp4、比较金属的比热熔冰mp4、水和煤油的吸热能力对比mp4、水和煤油的吸热能力对比swf等6份课件配套教学资源,其中PPT共23页, 欢迎下载使用。

    2021北京十一学校高一(上)期中数学(含答案): 这是一份2021北京十一学校高一(上)期中数学(含答案),共16页。

    2021北京育才学校高一(上)期中数学(教师版): 这是一份2021北京育才学校高一(上)期中数学(教师版),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map