搜索
    上传资料 赚现金
    英语朗读宝

    知识点07 函数与几何综合探究题(压轴)

    知识点07 函数与几何综合探究题(压轴)第1页
    知识点07 函数与几何综合探究题(压轴)第2页
    知识点07 函数与几何综合探究题(压轴)第3页
    还剩82页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    知识点07 函数与几何综合探究题(压轴)

    展开

    这是一份知识点07 函数与几何综合探究题(压轴),共85页。试卷主要包含了的坐标值等内容,欢迎下载使用。
    (分类)专题复习(七)函数与几何综合探究题(压轴)(周佳)
    类型1 探究线段最值问题
    类型2 探究面积问题
    类型3 探究角度问题
    类型4 探究特殊三角形存在性问题
    类型5 探究特殊四边形存在性问题
    类型6 探究全等、相似三角形的存在性问题
    类型7 反比例函数与几何图形的综合
    类型8 其他问题

    类型1 探究线段最值问题
    (2021·恩施)


    24.(2021·资阳)抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且B(﹣1,0),C(0,3).

    (1)求抛物线的解析式;
    (2)如图1,点P是抛物线上位于直线AC上方的一点,BP与AC相交于点E,当PE:BE=1:2时,求点P的坐标;
    (3)如图2,点D是抛物线的顶点,将抛物线沿CD方向平移,使点D落在点D'处,且DD'=2CD,点M是平移后所得抛物线上位于D'左侧的一点,MN∥y轴交直线OD'于点N,连结CN.当D'N+CN的值最小时,求MN的长.



    (2021·武威)




















    26.(2021·苏州)(本题满分10分)
    如图,二次两数(m是实数,且 - 1 < m < 0)的图像与x轴交于A、B两点(点A在点B的左侧),其对称轴与x轴交于点C.已知点D位于第一象限,且在对称轴上,OD⊥BD,点E在x轴的正半轴上,OC = EC,连接ED并延长交y轴于点F,连接AF.
    (1)求A、B、C三点的坐标(用数字或含m的式子表示);
    (2)已知点Q在抛物线的对称轴上,当△AFQ的周长的最小值等于时,求m的值.






    (2021·天津)




    24.(2021·武汉)抛物线y=x2-1交x轴于A,B两点(A在B的左边).
    (1)□ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上.
    ①如图(1),若点C的坐标是(0,3),点E的横坐标是,直接写出点A,D的坐标;
    ②如图(2),若点D在抛物线上,且□ACDE的面积是12,求点E的坐标;
    (2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点,若直线l与抛物线只有一个公共点,求证FG+FH的值是定值.














    26.(2021·广元)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:
    x

    ﹣1
    0
    1
    2
    3

    y

    0
    3
    4
    3
    0

    (1)求出这条抛物线的解析式及顶点M的坐标;
    (2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC的最小值;
    (3)如图2,点D是第四象限内抛物线上一动点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.


    25.(2021·黄石)抛物线y=ax2﹣2bx+b(a≠0)与y轴相交于点C(0,﹣3),且抛物线的对称轴为x=3,D为对称轴与x轴的交点.
    (1)求抛物线的解析式;
    (2)在x轴上方且平行于x轴的直线与抛物线从左到右依次交于E、F两点,若△DEF是等腰直角三角形,求△DEF的面积;
    (3)若P(3,t)是对称轴上一定点,Q是抛物线上的动点,求PQ的最小值(用含t的代数式表示).

    28.(2021·大庆)如图,抛物线y=ax2+bx+c与x轴交于除原点O和点A,且其顶点B关于x轴的对称点坐标为(2,1).
    (1)求抛物线的函数表达式;
    (2)抛物线的对称轴上存在定点F,使得抛物线y=ax2+bx+c上的任意一点G到定点F的距离与点G到直线y=-2的距离总相等.
    ①证明上述结论并求出点F的坐标;
    ②过点F的直线l与抛物线y=ax2+bx+c交于M,N两点.
    证明:当直线l绕点F旋转时,+是定值,并求出该定值;
    (3)点C(3,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQBC 周长最小,直接写出P,Q的坐标.


    (2021·包头)




    25.(2021·宜宾)如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.
    (1)求抛物线的表达式;
    (2)判断△BCE的形状,并说明理由;
    (3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP的值最小,若存在,请求出最小值;若不存在,请说明理由.


    24.(2021·东营)如图,抛物线与轴交于A、B两点,与轴交于点C,直线过B、C两点,连接AC.

    (1)求抛物线的解析式;
    (2)求证:;
    (3)点是抛物线上的一点,点D为抛物线上位于直线BC上方的一点,过点D作轴交直线BC于点E,点P为抛物线对称轴上一动点,当线段DE的长度最大时,求的最小值.
    24.(本题满分10分)
    (1)解:∵直线分别与轴和轴交于点B和点C
    ∴点B的坐标为(4,0),点C的坐标为(0,2)
    把,分别代入
    得 2分
    解得
    ∴抛物线的解析式为.3分
    (2)证明(方法一):
    ∵抛物线与x轴交于点A

    解得,.4分
    点A的坐标为
    ∴,
    在中,,




    ∴ 5分
    又∵
    ∴.6分
    证明(方法二):
    利用勾股定理的逆定理可证是直角三角形,从而证得,其余略.6分
    (3)设点D的坐标为
    则点E的坐标为




    ∴当时,线段DE的长度最大.8分
    此时,点D的坐标为
    ∵,
    ∴点C和点M关于对称轴对称
    连接CD交对称轴于点P,此时最小.
    连接CM交直线DE于点F,则,点F的坐标为


    ∴的最小值.10分


    24.(2021·鄂州)(本题满分12分)
    如图,直线与轴交于点,与轴交于点,点为线段的中点,点是线段上一动点(不与点、重合).

    (1)(3分)请直接写出点、点、点的坐标;
    (2)(3分)连接,在第一象限内将沿翻折得到,点的对应点为点.若,求线段的长;
    (3)在(2)的条件下,设抛物线的顶点为点.
    ①(3分)若点在内部(不包括边),求的取值范围;
    ②(3分)在平面直角坐标系内是否存在点,使最大?若存在,请直接写出点的坐标;若不存在,请说明理由.

    备用图1 备用图2

    26.(2021·玉林) 已知抛物线:()与轴交点为,(在的左侧),顶点为.

    (1)求点,的坐标及抛物线的对称轴;
    (2)若直线与抛物线交于点,,且,关于原点对称,求抛物线的解析式;
    (3)如图,将(2)中抛物线向上平移,使得新的抛物线的顶点在直线上,设直线与轴的交点为,原抛物线上的点平移后的对应点为点,若,求点,的坐标.
    【答案】(1),对称轴为直线;(2);(3)或


    类型2 探究面积问题
    (2021·山西)



    (2021·扬州)


    25.(2021·常德)如图,在平面直角坐标系xOy中,平行四边形ABCD的AB边与y轴交于E点,F是AD的中点,B、C、D的坐标分别为(﹣2,0),(8,0),(13,10).
    (1)求过B、E、C三点的抛物线的解析式;
    (2)试判断抛物线的顶点是否在直线EF上;
    (3)设过F与AB平行的直线交y轴于Q,M是线段EQ之间的动点,射线BM与抛物线交于另一点P,当△PBQ的面积最大时,求P的坐标.


    (2021·聊城)














    (2021·荆州)






    (2021·贵港)

    25.(2021·襄阳)如图,直线与,轴分别交于,,顶点为的抛物线过点.
    (1)求出点,的坐标及的值;
    (2)若函数在时有最大值为,求的值;
    (3)连接,过点作的垂线交轴于点.设的面积为.
    ①直接写出关于的函数关系式及的取值范围;
    ②结合与的函数图象,直接写出时的取值范围.

    解:(1)当时,.得.
    当时,,解得.得.
    把代入,得.
    (2).
    当,时,随的增大而增大,
    ∴当,的值最大.
    由题意得.
    解得.
    当,时,随的增大而减小.
    ∴当时,的值最大.
    由题意得.
    解得(不合题意,舍去).
    ∴,
    (3)①
    ②或.

    (2021·柳州)





    26.(2021·贺州)如图,抛物线y=x2+bx+c与x轴交于A、B两点,且A(﹣1,0),对称轴为直线x=2.
    (1)求该抛物线的函数达式;
    (2)直线l过点A且在第一象限与抛物线交于点C.当∠CAB=45°时,求点C的坐标;
    (3)点D在抛物线上与点C关于对称轴对称,点P是抛物线上一动点,令P(xP,yP),当1≤xP≤a,1≤a≤5时,求△PCD面积的最大值(可含a表示).



    25.(2021·福建)已知抛物线y=ax2+bx+c与x轴只有一个公共点.
    (1)若抛物线过点P(0,1),求a+b的最小值;
    (2)已知点P1(﹣2,1),P2(2,﹣1),P3(2,1)中恰有两点在抛物线上.
    ①求抛物线的解析式;
    ②设直线l:y=kx+1与抛物线交于M,N两点,点A在直线y=﹣1上,且∠MAN=90°,过点A且与x轴垂直的直线分别交抛物线和于点B,C.求证:△MAB与△MBC的面积相等.




    27.(2021·盐城)学习了图形的旋转之后,小明知道,将点P绕着某定点A顺时针旋转一定的角度α,能得到一个新的点P′,经过进一步探究,小明发现,当上述点P在某函数图象上运动时,点P′也随之运动,并且点P′的运动轨迹能形成一个新的图形.
    试根据下列各题中所给的定点A的坐标、角度α的大小来解决相关问题.
    【初步感知】
    如图1,设A(1,1),α=90°,点P是一次函数y=kx+b图象上的动点,已知该一次函数的图象经过点P1(﹣1,1).
    (1)点P1旋转后,得到的点P1′的坐标为    ;
    (2)若点P′的运动轨迹经过点P2′(2,1),求原一次函数的表达式.
    【深入感悟】
    如图2,设A(0,0),α=45°,点P是反比例函数y=﹣(x<0)的图象上的动点,过点P′作二、四象限角平分线的垂线,垂足为M,求△OMP′的面积.
    【灵活运用】
    如图3,设A(1,﹣),α=60°,点P是二次函数y=x2+2x+7图象上的动点,已知点B(2,0)、C(3,0),试探究△BCP′的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.














    类型3 探究角度问题

    (2021·成都)(本小题满分12分)
    如图,在平面直角坐标系中,抛物线与x轴相交于O,A两点,顶点P的坐标为.点B为抛物线上一动点,连接,过点B的直线与抛物线交于另一点C.

    (1)求抛物线的函数表达式;
    (2)若点B的横坐标与纵坐标相等,,且点C位于x轴上方,求点C的坐标;
    (3)若点B的横坐标为t,,请用含t的代数式表示点C的横坐标,并求出当时,点C的横坐标的取值范围.
    解:(1)抛物线的函数表达式为或
    (2)当点B的坐标为时,直线的函数表达式为,进而得到点C的坐标为;当点B的坐标为时,直线的函数表达式为,进而得到点C的坐标为,所以点C的坐标为或;
    (3)直线的函数表达式为,进而得到点C的横坐标为.
    ,当时,即时,取得最小值12.所以,当时,点C的横坐标的取值范围为.
    (2021·黄冈)

    (2021·眉山)





    (2021·泰安)




    (2021·自贡)如图,抛物线y=(x+1)(x﹣a)(其中a>1)与x轴交于A、B两点,交y轴于点C.
    (1)直接写出∠OCA的度数和线段AB的长(用a表示);
    (2)若点D为△ABC的外心,且△BCD与△ACO的周长之比为:4,求此抛物线的解析式;
    (3)在(2)的前提下,试探究抛物线y=(x+1)(x﹣a)上是否存在一点P,使得∠CAP=∠DBA?若存在,求出点P的坐标;若不存在,请说明理由.



    26.(2021·连云港)如图,抛物线y=mx2+(m2+3)x﹣(6m+9)与x轴交于点A、B,与y轴交于点C,已知B(3,0).
    (1)求m的值和直线BC对应的函数表达式;
    (2)P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;
    (3)Q为抛物线上一点,若∠ACQ=45°,求点Q的坐标.



    25.(2021·衡阳)如图,△OAB的顶点坐标分别为O(0,0),A(3,4),B(6,0),动点P、Q同时从点O出发,分别沿x轴正方向和y轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点P到达点B时点P、Q同时停止运动.过点Q作MN∥OB分别交AO、AB于点M、N,连接PM、PN.设运动时间为t(秒).
    (1)求点M的坐标(用含t的式子表示);
    (2)求四边形MNBP面积的最大值或最小值;
    (3)是否存在这样的直线l,总能平分四边形MNBP的面积?如果存在,请求出直线l的解析式;如果不存在,请说明理由;
    (4)连接AP,当∠OAP=∠BPN时,求点N到OA的距离.






    24.(2021·岳阳)如图,抛物线经过,两点,与轴交于点,连接.

    (1)求该抛物线的函数表达式;
    (2)如图2,直线:经过点,点为直线上的一个动点,且位于轴的上方,点为抛物线上的一个动点,当轴时,作,交抛物线于点(点在点的右侧),以,为邻边构造矩形,求该矩形周长的最小值;
    (3)如图3,设抛物线的顶点为,在(2)的条件下,当矩形的周长取最小值时,抛物线上是否存在点,使得?若存在,请求出点的坐标;若不存在,请说明理由.

    (2021·枣庄)


    类型4 探究特殊三角形存在性问题
    (2021·广安)


    24.(2021·怀化)(本题满分14分)
    如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且,,,抛物线的对称轴与直线BC交于点M,与x轴交于点N.
    (1)求抛物线的解析式;
    (2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与相似?若存在,求出点P的坐标,若不存在,请说明理由.
    (3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点C走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.
    (4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰?若存在,求出点Q的坐标,若不存在,请说明理由.



    25.(2021·南充)如图,已知抛物线与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为.

    图1 图2
    (1)求抛物线的解析式..
    (2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ.当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由.
    (3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且.在y轴上是否存在点F,使得为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.


    (2021·随州)






    26.(2021·衡阳)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)……都是“雁点”.
    (1)求函数y=图象上的“雁点”坐标;
    (2)若抛物线y=ax2+5x+c上有且只有一个“雁点”E,该抛物线与x轴交于M、N两点(点M在点N的左侧).当a>1时.
    ①求c的取值范围;
    ②求∠EMN的度数;
    (3)如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左侧),P是抛物线y=﹣x2+2x+3上一点,连接BP,以点P为直角顶点,构造等腰Rt△BPC,是否存在点P,使点C恰好为“雁点”?若存在,求出点P的坐标;若不存在,请说明理由.






    28.(2021·宿迁)(本小题满分12分)
    如图,抛物线y=−12x2+bx+c与x轴交于A(—1,0),B(4,0),与y轴交于点C.连接AC,BC,点P在抛物线上运动.
    (1)求抛物线的表达式;
    (2)如图①,若点P在第四象限,点Q在PA的延长线上,当∠CAQ=∠CBA+45°时,求点P的坐标;
    (3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC于点H,当△PFH为等腰三角形时,求线段PH的长.


    26.(2021·本溪)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点C(﹣1,0),与y轴交于点B(0,3),连接AB,BC,点P是抛物线第一象限上的一动点,过点P作PD⊥x轴于点D,交AB于点E.
    (1)求抛物线的解析式;
    (2)如图1,作PF⊥PD于点P,使PF=OA,以PE,PF为邻边作矩形PEGF.当矩形PEGF的面积是△BOC面积的3倍时,求点P的坐标;
    (3)如图2,当点P运动到抛物线的顶点时,点Q在直线PD上,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围.


    (2021·绥化)





    类型5 探究特殊四边形存在性问题
    25.(2021·重庆A卷)如图,在平面直角坐标系中,抛物线经过A(0,﹣1),B(4,1).直线AB交x轴于点C,P是直线AB下方抛物线上的一个动点.过点P作PD⊥AB,垂足为D,PE∥x轴,交AB于点E.
    (1)求抛物线的函数表达式;
    (2)当△PDE的周长取得最大值时,求点P的坐标和△PDE周长的最大值;
    (3)把抛物线平移,使得新抛物线的顶点为(2)中求得的点P.M是新抛物线上一点,N是新抛物线对称轴上一点,直接写出所有使得以点A,B,M,N为顶点的四边形是平行四边形的点M的坐标,并把求其中一个点M的坐标的过程写出来.


    25.解(1)∵抛物线经过点A(0,﹣1),点B(4,1),

    解得
    ∴该抛物线的函数表达式为.…………………………………………………………(2分)
    (2)∵A(0,-1),B(4,1),
    ∴直线AB的函数表达式为
    ∴(2,0)
    设P,其中0

    相关试卷

    万唯中考数学压轴题函数+几何含答案:

    这是一份万唯中考数学压轴题函数+几何含答案,文件包含万唯中考-数学压轴题-几何pdf、万唯中考-数学压轴题-函数pdf、万唯中考-数学压轴题-几何-答案pdf、万唯中考-数学压轴题-函数-答案pdf等4份试卷配套教学资源,其中试卷共500页, 欢迎下载使用。

    中考几何模型压轴题 专题30《函数与面积》:

    这是一份中考几何模型压轴题 专题30《函数与面积》,共13页。

    中考几何模型压轴题 专题29《函数与圆》:

    这是一份中考几何模型压轴题 专题29《函数与圆》,共7页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map