专题07 手拉手模型综合应用(专项训练)-备战中考数学《重难点解读•专项训练》(全国通用)
展开
这是一份专题07 手拉手模型综合应用(专项训练)-备战中考数学《重难点解读•专项训练》(全国通用),文件包含专题07手拉手模型综合应用专项训练解析版docx、专题07手拉手模型综合应用专项训练原卷版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
专题07 手拉手模型综合应用(专项训练)1.已知等边△AOB和△COD.求证:AC=BD.【解答】证明:∵△AOB和△COD是等边三角形,∴OA=OB,OC=OD,∠AOB=∠COD=60°,∴∠AOB+∠BOC=∠COD+∠BOC,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD.2.如图,等边△ABC,点D为BC延长线上一点,连接AD,将线段AD绕点A逆时针旋转60°得到线段AE.连接CE.求证:BD=CE.【解答】证明:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC,由旋转的性质可得:∠DAE=60°,AD=AE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD 和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE.3.以△ABC的AB,AC为边作△ABD和△ACE,且AD=AB,AE=AC,∠DAB=∠CAE=α.CD与BE相交于O,连结AO,如图①所示.(1)求证:BE=CD;(2)判断∠AOD与∠AOE的大小,并说明理由.(3)在EB上取点F,使EF=OC,如图②,请直接写出∠AFO与α的数量关系. 【解答】(1)证明:∵∠DAB=∠CAE,∴∠DAB+∠BAC=∠BAC+∠CAE,∴∠DAC=∠BAE,又∵AD=AB,AC=AE,∴△ABE≌△ADC(SAS),∴BE=DC;(2)解:∠AOD=∠AOE,理由如下:过点A作AM⊥DC于点M,AN⊥BE于点N,∵△ABE≌△ADC,∴∠ABE=∠ADC,又∵AD=AB,∴△ADM≌△ABN(AAS),∴AM=AN,∵AM⊥OD,AN⊥OE,∴∠AOD=∠AOE;(3)解:∵△AOD≌△AEB,∴∠AEF=∠ACO,AE=AC,又∵EF=CO,∴△AEF≌△ACO(SAS),∴∠AFE=∠AOC,AF=AO,∴∠AFO=∠AOF=∠AOD.又∵∠DAB=∠DOB=α,∴2∠AFO=180°﹣α. 4.如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PB=1,PC=2,PA=3,过点C作CD⊥CP,垂足为C,令CD=CP,连接DP,BD,求∠BPC的度数.【解答】解:∵CD⊥CP,∴∠PCD=90°,∵PC=CD=2,∴△PCD是等腰直角三角形,∴PD=PC=2,∠CPD=∠CDP=45°,∵∠ACB=90°,∴∠ACP+∠PCB=90°,又∵∠PCB+∠BCD=90°,∴∠ACP=∠BCD,在△ACP和△BCD中,,∴△ACP≌△BCD(SAS),∴BD=PA=3,∵PB=1,∴PB2+PD2=12+(2)2=9,∵PA2=32=9,∴PA2=PB2+PD2,∴∠BPD=90°,∵∠CPD=45°,∴∠BPC=∠BPD+∠CPD=135°.5.如图,△ABC和△DCE都是等边三角形.(1)如图1,线段BD与AE是否相等?若相等,加以证明;若不相等,请说明理由.(2)如图1,若 B、C、E三点在一条直线上,AE与BD交于点O,求∠BOE的度数.(3)如图2,若 B、C、E三点不在一条直线上,∠ADC=30°,AD=4,CD=3,求BD的长. 【解答】解:(1)BD=AE,理由如下:∵△ABC和△DCE都是等边三角形.∴BC=CA,CD=CE,∠ACB=∠DCE,∴∠BCD=∠ACE,∴△BCD≌△ACE(SAS),∴BD=AE;(2)由△BCD≌△ACE得,∠BDC=∠AEC,∵∠BOE=∠ODE+∠DEO=∠CDE+∠DEC=60°+60°=120°,∴∠BOE的度数是120°;(3)∵∠ADC=30°,∠CDE=60°,∴∠ADE=90°,∵CD=DE=3,在Rt△ADE中,由勾股定理得,AE==5,由(1)同理得,△BCD≌△ACE,∴BD=AE=5.6.如图,△ABC是等边三角形,D为边BC的中点,BE⊥AB交AD的延长线于点E,点F在AE上,且AF=BE,连接CF、CE.求证:(1)∠CAF=∠CBE;(2)△CEF是等边三角形.【解答】证明:(1)∵△ABC是等边三角形,∴∠CAB=∠CBA=60°,∵D为BC的中点,∴∠CAD=∠CAB=30°,又∵BE⊥AB,∴∠ABE=90°,∴∠CBE=90°﹣∠CBA=30°,∴∠CAF=∠CBE;(2)∵△ABC是等边三角形,∴CA=CB,在△CAF和△CBE中,,∴△CAF≌△CBE(SAS),∴CE=CF,∠ACF=∠BCE,∴∠ECF=∠BCE+∠BCF=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形.7.(1)如图1,△ABC和△AMN都是等腰直角三角形,直角顶点为点A,△ABC固定不动,△AMN可以绕着点A旋转.①如图2,将△AMN绕点A旋转,使点M落在BC边上,连接CN.直接写出图中的全等三角形: ;直接写出线段CN,CM,CB之间满足的等量关系为: ;②如图2,试探索线段MA,MB,MC之间满足的等量关系,并完整地证明你的结论;(2)如图3,P是等腰直角△ABC内一点,∠BAC=90°,连接PA,PB,PC,将△BAP绕点A顺时针旋转90°后得到△CAQ,连接PQ.已知PA=2,PB=3,若∠PQC=90°,求PC的长. 【解答】解:(1)①∵∠BAM+∠MAC=90°,∠CAN+∠MAC=90°,∴∠BAM=∠CAN,在△BAM和△CAN中:,∴△BAM≌△CAN(SAS),∴BM=CN,∵BM+CM=CB,∴CN+CM=CB,故答案为:△BAM≌△CAN,CN+CM=CB;②MB2+MC2=2MA2;证明如下:同理①可证△BAM≌△CAN,∴∠ACN=∠B=45°,即∠BCN=90°,∴CN2+MC2=MN2,在R△MAN中,MN2=MA2+AN2=2MA2,∴MB2+MC2=2MA2;(2)由旋转知△BAP≌△CAQ,∴PA=QA=2,∠PAQ=∠BAC=90°,CQ=BP=3,∴△PAQ为等腰直角三角形,∴PQ2=PA2+QA2=22+22=8,∵∠PQC=90°,∴PC2=PQ2+QC2=8+32=17,∴PC=.8.如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x轴正半轴上动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长交y轴于点E.(1)求证:△OBC≌△ABD.(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果变化,请说明理由.(3)以A,E,C为顶点的三角形是等腰三角形时,直接写出此时点C的坐标和CD的长度.【解答】(1)证明:∵△OAB和△BCD是等边三角形,∴∠OBA=∠CBD=60°,OB=AB,BC=BD,∴∠OBC=∠ABD,在△OBC和△ABD中,,∴△OBC≌△ABD(SAS);(2)解:点C在运动过程中,∠CAD的度数不会变化,理由如下,∵△AOB是等边三角形,∴∠BOA=∠OAB=60°,∵△OBC≌△ABD,∴∠BAD=∠BOA=60°,∴∠CAD=180°﹣∠OAB﹣∠BAD=180°﹣60°﹣60°=60°,∴点C在运动过程中,∠CAD的度数一直为60°.(3)解:∵∠BOC=∠BAD=60°,∠OAB=60°,∴∠OAE=180°﹣60°﹣60°=60°,∴∠EAC=120°,∠AEO=30°,∴以A,E,C为顶点的三角形是等腰三角形时,AE和AC为腰,∵OA=1,∠AEO=30°,∠AOE=90°,∴AC=AE=2OA=2,∴OA=OA+AC=1+2=3,∴点C的坐标为(3,0),过点B作BH⊥x轴于点H,则AH=OA=AO=,∠ABH=30°,∴BH==,CH=AH+AC=+2=,∴BC==,∴CD=BC=.9.已知:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数;(3)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.①请你直接写出∠AEB的度数为多少度?②探索线段CM、AE、BE之间存在怎样的数量关系,并说明理由.【解答】(1)证明:∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∵∠ACB﹣∠DCB=∠DCE﹣∠DCB,∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;(2)解:∵△ACD≌△BCE,∴∠ADC=∠BEC,∵△DCE为等边三角形,∴∠CDE=∠CED=60°,∵点A、D、E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC﹣∠CED=60°;(3)解:①∵△ACB和△DCE均为等腰直角三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∠CDE=∠CED=45°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD,∠BEC=∠ADC,∵点A,D,E在同一直线上,∴∠ADC=180﹣45=135°,∴∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°;②AE=BE+2CM.理由:如图2,∵∠DCE=90°,CD=CE,CM⊥DE,∴CM=DM=EM,∴DE=DM+EM=2CM,∵△ACD≌△BCE(已证),∴BE=AD,∴AE=AD+DE=BE+2CM. 10.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=3,AG=,求EB的长.【解答】(1)证明:∵四边形EFGA和四边形ABCD是正方形,∴AG=AE,AB=AD,∠EAG=∠DAB=90°,∵∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,在△GAD和△EAB中,,∴△GAD≌△EAB(SAS),∴EB=GD;(2)解:BE⊥GD,理由如下:如图,设DG与AE的交点为P,∵△GAD≌△EAB,∴∠AEB=∠AGD,∵∠EPH=∠APG,∴∠EHG=∠EAG=90°,∴EB⊥GD;(2)解:如图2,连接BD,BD与AC交于点O,∵四边形ABCD是正方形,AB=3,∴DB=AB=3,DO=BO=,∵AG=,∴GO=AO+AG=,∴DG===,∴BE=DG=.11.点C为线段AB上一点,分别以AC、BC为边在线段AB的同侧作正方形ACDE和BCFG,连接AF、BD.(1)如图①,AF与BD的数量关系和位置关系分别为 , ;(2)将正方形BCFG绕着点C顺时针旋转α角(0°<α<360°),①如图②,第(1)问的结论是否仍然成立?请说明理由;②若AC=4,BC=,当正方形BCFG绕着点C顺时针旋转到点A、B、F三点共线时,求DB的长度.【解答】解:(1)AF与BD的数量关系和位置关系分别为AF=BD,AF⊥BD,理由如下:延长AF交BD于H,如图①所示:∵四边形ACDE和四边形BCFG是正方形,∴AC=CD,CF=CB,∠ACF=∠DCB=90°,∴∠CAF+∠AFC=90°,在△ACF和△DCB中,,∴△ACF≌△DCB(SAS),∴AF=BD,∠CAF=∠CDB,∵∠DFH=∠AFC,∴∠CDB+∠DFH=∠CAF+∠AFC=90°,∴∠DHF=90°,∴AF⊥BD;故答案为:AF=BD,AF⊥BD;(2)①第(1)问的结论仍然成立,理由如下:设AF交CD于点M,如图②所示:∵四边形ACDE和四边形BCFG是正方形,∴AC=CD,CF=CB,∠ACD=∠FCB=90°,∴∠CAF+∠AMC=90°,∴∠ACD+∠DCF=∠FCB+∠DCF,即∠ACF=∠BCD,在△ACF和△DCB中,,∴△ACF≌△DCB(SAS),∴AF=BD,∠CAF=∠CDB,∵∠DMH=∠AMC,∴∠CDB+∠DMH=∠CAF+∠AMC=90°,∴∠DHM=90°,∴AF⊥BD;②分两种情况:a、如图③所示:连接CG交BF于O,∵四边形BCFG是正方形,∴CB=BG,BF⊥CG,∠BGF=90°,OB=OF=OC=OG,∴BF=CG=BC=2,OB=OF=OC=BF=1,∴AO===,∴AF=AO+OF=+1,由(2)得:AF=DB,∴DB=+1;b、如图④所示:连接CG交BF于O,同上得:OB=OF=OC=BF=1,∴AO===,AF=AO﹣OF=﹣1,由(2)得:AF=DB,∴DB=﹣1;综上所述,当正方形BCFG绕着点C顺时针旋转到点A、B、F三点共线时,DB的长度为+1或﹣1.
相关试卷
这是一份专题07 手拉手模型综合应用(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用),文件包含专题07手拉手模型综合应用知识解读-备战中考数学《重难点解读•专项训练》全国通用解析版docx、专题07手拉手模型综合应用知识解读-备战中考数学《重难点解读•专项训练》全国通用原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
这是一份专题06 半角模型综合应用(专项训练)-备战中考数学《重难点解读•专项训练》(全国通用),文件包含专题06半角模型综合应用专项训练解析版docx、专题06半角模型综合应用专项训练原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份专题07 手拉手模型综合应用(专项训练)-备战中考数学《重难点解读•专项训练》(全国通用),文件包含专题07手拉手模型综合应用专项训练解析版docx、专题07手拉手模型综合应用专项训练原卷版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。