![专题11 二次函数与矩形、菱形的存在性问题(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)01](http://img-preview.51jiaoxi.com/2/3/14399820/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题11 二次函数与矩形、菱形的存在性问题(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)02](http://img-preview.51jiaoxi.com/2/3/14399820/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题11 二次函数与矩形、菱形的存在性问题(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)03](http://img-preview.51jiaoxi.com/2/3/14399820/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题11 二次函数与矩形、菱形的存在性问题(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)01](http://img-preview.51jiaoxi.com/2/3/14399820/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题11 二次函数与矩形、菱形的存在性问题(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)02](http://img-preview.51jiaoxi.com/2/3/14399820/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题11 二次函数与矩形、菱形的存在性问题(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)03](http://img-preview.51jiaoxi.com/2/3/14399820/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
专题11 二次函数与矩形、菱形的存在性问题(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)
展开
专题11 二次函数与矩形、菱形的存在性问题(知识解读)
【专题说明】
二次函数为载体的矩形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.
【解题思路】
考点1 矩形存在性问题
1.矩形的判定:
(1)有一个角是直角的平行四边形;
(2)对角线相等的平行四边形;
(3)有三个角为直角的四边形.
2.题型分析
矩形除了具有平行四边形的性质之外,还有“对角线相等”或“内角为直角”,因此相比起平行四边形,坐标系中的矩形满足以下3个等式:
(AC为对角线时)
因此在矩形存在性问题最多可以有3个未知量,代入可以得到三元一次方程组,可解.
确定了有3个未知量,则可判断常见矩形存在性问题至少有2个动点,多则可以有3个.下:
(1)2个定点+1个半动点+1个全动点;
(2)1个定点+3个半动点.
思路1:先直角,再矩形
在构成矩形的4个点中任取3个点,必构成直角三角形,以此为出发点,可先确定其中3个点构造直角三角形,再确定第4个点.对“2定+1半动+1全动”尤其适用.
【例题】已知A(1,1)、B(4,2),点C在x轴上,点D在平面中,且以A、B、C、D为顶点的四边形是矩形,求D点坐标.
解:点 C 满足以 A、B、C 为顶点的三角形是直角三角形,构造“两线一圆”可得满足条件的 点 C 有
在点 C 的基础上,借助点的平移思路,可迅速得到点 D 的坐标.
思路2:先平行,再矩形
当AC为对角线时,A、B、C、D满足以下3个等式,则为矩形:
其中第1、2个式子是平行四边形的要求,再加上式3可为矩形.表示出点坐标后,代入点坐标解方程即可.
无论是“2定1半1全”还是“1定3半”,对于我们列方程来解都没什么区别,能得到的都是三元一次方程组.
考点2 菱形存在性问题
1.菱形的判定:有一组邻边相等的平行四边形是菱形.
2.坐标系中的菱形:
有 3 个等式,故菱形存在性问题点坐标最多可以有 3 个未知量,与矩形相同.
3.解题思路:
(1)思路 1:先等腰,再菱形
在构成菱形的 4 个点中任取 3 个点,必构成等腰三角形,根据等腰存在性方法可先确
定第 3 个点,再确定第 4 个点.
(2)思路 2:先平行,再菱形
设点坐标,根据平行四边形的存在性要求列出“”(AC、BD 为对角线),再结合一组邻
边相等,得到方程组.
方法总结:
菱形有一个非常明显的特点:任意三个顶点所构成的三角形必然是等腰三角形。
【典例分析】
【考点1 矩形的存在性问题】
【典例1】(2022•鱼峰区模拟)如图,在平面直角坐标系中,抛物线y=x2+bx+c与坐标轴交于A(0,﹣2),B(4,0)两点,直线BC:y=﹣2x+8交y轴于点C.
(1)求该抛物线的解析式;
(2)在第二象限内是否存在一点M,使得四边形ABCM为矩形?如果存在,求出点M的坐标;如果不存在,请说明理由.
【变式1-1】(2022•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.
(1)直接写出抛物线的解析式;
(2)如图2,连接AC,当点P在直线AC上方时,求四边形PABC面积的最大值,并求出此时P点的坐标;
(3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.
【变式1-2】(辽阳)如图,直线y=x﹣3与坐标轴交于A、B两点,抛物线y=x2+bx+c经过点B,与直线y=x﹣3交于点E(8,5),且与x轴交于C,D两点.
(1)求抛物线的解析式;
(2)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
【考点2 菱形的存在性问题】
【典例2】如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,交y轴于点C,动点P在抛物线的对称轴上.
(1)求抛物线的解析式;
(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及△PBC的周长;
(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
【变式2-1】如图,在直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A(﹣1,0)和点B(3,0),与y轴交于点C.
(1)求b、c的值;
(2)点P(m,n)为抛物线上的动点,过P作x轴的垂线交直线l:y=x于点Q.
①当0<m<3时,求当P点到直线l:y=x的距离最大时m的值;
②是否存在m,使得以点O、C、P、Q为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m的值.
【变式2-2】综合与探究
如图,抛物线y=x2+2x﹣6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.
(1)求A、B,C三点的坐标并直接写出直线AC,BC的函数表达式.
(2)点P是直线AC下方抛物线上的一个动点,过点P作BC的平行线l,交线段AC于点D.
①试探究:在直线l上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,求出点E的坐标,若不存在,请说明理由;
②设抛物线的对称轴与直线l交于点M,与直线AC交于点N.当S△DMN=S△AOC时,请直接写出DM的长.
【变式2-3】如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点 C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.
(1)求这个二次函数的表达式;
(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;
②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.
专题05 定角定高(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用): 这是一份专题05 定角定高(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用),文件包含专题05定角定高知识解读-备战中考数学《重难点解读•专项训练》全国通用解析版docx、专题05定角定高知识解读-备战中考数学《重难点解读•专项训练》全国通用原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
专题04 定弦定角(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用): 这是一份专题04 定弦定角(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用),文件包含专题04定弦定角知识解读-备战中考数学《重难点解读•专项训练》全国通用解析版docx、专题04定弦定角知识解读-备战中考数学《重难点解读•专项训练》全国通用原卷版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
专题03 阿氏圆(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用): 这是一份专题03 阿氏圆(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用),文件包含专题03阿氏圆知识解读-备战中考数学《重难点解读•专项训练》全国通用解析版docx、专题03阿氏圆知识解读-备战中考数学《重难点解读•专项训练》全国通用原卷版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。