压轴题11二次函数与圆综合问题-2023年中考数学压轴题专项训练(全国通用)
展开2023年中考数学压轴题专项训练
压轴题11二次函数与圆综合问题
解决函数与圆的综合问题的关键是找准函数与圆的结合点,弄清题目的本质,利用圆的基本性质和函数的性质、数形结合、方程思想、全等与相似,以便找到对应的解题途径.常见的考法有:
- 直线与圆的位置关系:
平面直角坐标系中的直线与圆的位置关系问题关键是圆心到直线的距离等于半径的大小,常用的方法有:
(1) 利用圆心到直线的距离等于半径的大小这一数量关系列出关系式解决问题
(2) 利用勾股定理解决问题
(3) 利用相似列出比例式解决问题
2.函数与圆的新定义题目:利用已掌握的知识和方法理解新定义,化生为熟
3.函数与圆的性质综合类问题:利用几何性质,结合图形,找到问题中的“不变”关键因素和“临界位置”.
考向一、二次函数与圆的胡不归最值问题
例1.如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0),点A为抛物线的顶点.
(1)求二次函数的表达式;
(2)在抛物线的对称轴上是否存在点M,使△ABM是等腰三角形?如果存在,请求出点M的坐标.如果不存在,请说明理由;
(3)若点P为⊙O上的动点,且⊙O的半径为,求的最小值.
考向二、二次函数与圆性质综合问题
例2.如图1,已知圆O的圆心为原点,半径为2,与坐标轴交于A,C,D,E四点,B为OD中点.
(1)求过A,B,C三点的抛物线解析式;
(2)如图2,连接BC,AC.点P在第一象限且为圆O上一动点,连接BP,交AC于点M,交OC于点N,当MC2=MN•MB时,求M点的坐标;
(3)如图3,若抛物线与圆O的另外两个交点分别为H,F,请判断四边形CFEH的形状,并说明理由.
考向三、二次函数与圆的位置关系问题
例3.二次函数的图象经过点A(﹣1,0)和点C(0,﹣3)与x轴的另一交点为点B.
(1)求b,c的值;
(2)定义:在平面直角坐标系xOy中,经过该二次函数图象与坐标轴交点的圆,称为该二次函数的坐标圆.问:在该二次函数图象的对称轴上是否存在一点Q,以点Q为圆心,为半径作⊙Q,使⊙Q是二次函数的坐标圆?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)如图所示,点M是线段BC上一点,过点M作MP∥y轴,交二次函数的图象于点P,以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出的值.
考向四、二次函数与圆的新定义问题
例4.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)求“蛋圆”抛物线部分的解析式及“蛋圆”的弦CD的长;
(2)已知点E是“蛋圆”上的一点(不与点A,点B重合),点E关于x轴的对称点是点F,若点F也在“蛋圆”上,求点E坐标;
(3)点P是“蛋圆”外一点,满足∠BPC=60°,当BP最大时,直接写出点P的坐标.
1.在平面直角坐标系中,二次函数yx2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.
(1)求二次函数的解析式;
(2)如图甲,连接AC,PA,PC,若S△PAC,求点P的坐标;
(3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.
2.如图,抛物线的顶点为A(0,2),且经过点B(2,0).以坐标原点O为圆心的圆的半径r,OC⊥AB于点C.
(1)求抛物线的函数解析式.
(2)求证:直线AB与⊙O相切.
(3)已知P为抛物线上一动点,线段PO交⊙O于点M.当以M,O,A,C为顶点的四边形是平行四边形时,求PM的长.
3.如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 0 | 3 | 4 | 3 | 0 | … |
(1)求出这条抛物线的解析式及顶点M的坐标;
(2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC的最小值;
(3)如图2,点D是第四象限内抛物线上一动点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
4.如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0).
(1)求二次函数的表达式;
(2)求顶点A的坐标及直线AB的表达式;
(3)判断△ABO的形状,试说明理由;
(4)若点P为⊙O上的动点,且⊙O的半径为2,一动点E从点A出发,以每秒2个单位长度的速度沿线段AP匀速运动到点P,再以每秒1个单位长度的速度沿线段PB匀速运动到点B后停止运动,求点E的运动时间t的最小值.
5.如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.
(1)求抛物线的表达式;
(2)判断△BCE的形状,并说明理由;
(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BPEP的值最小,若存在,请求出最小值;若不存在,请说明理由.
6.如图1,已知抛物线y=ax2﹣12ax+32a(a>0)与x轴交于A,B两点(A在B的左侧),与y轴交于点C.
(1)连接BC,若∠ABC=30°,求a的值.
(2)如图2,已知M为△ABC的外心,试判断弦AB的弦心距d是否有最小值,若有,求出此时a的值,若没有,请说明理由;
(3)如图3,已知动点P(t,t)在第一象限,t为常数.
问:是否存在一点P,使得∠APB达到最大,若存在,求出此时∠APB的正弦值,若不存在,也请说明理由.
7.如图,在平面直角坐标系上,一条抛物线y=ax2+bx+c(a≠0)经过A(1,0)、B(3,0)、C(0,3)三点,连接BC并延长.
(1)求抛物线的解析式;
(2)点M是直线BC在第一象限部分上的一个动点,过M作MN∥y轴交抛物线于点N.
1°求线段MN的最大值;
2°当MN取最大值时,在线段MN右侧的抛物线上有一个动点P,连接PM、PN,当△PMN的外接圆圆心Q在△PMN的边上时,求点P的坐标.
8.如图,在平面直角坐标系中,抛物线yx2﹣bx+c交x轴于点A,B,点B的坐标为(4,0),与y轴于交于点C(0,﹣2).
(1)求此抛物线的解析式;
(2)在抛物线上取点D,若点D的横坐标为5,求点D的坐标及∠ADB的度数;
(3)在(2)的条件下,设抛物线对称轴l交x轴于点H,△ABD的外接圆圆心为M(如图1),
①求点M的坐标及⊙M的半径;
②过点B作⊙M的切线交于点P(如图2),设Q为⊙M上一动点,则在点运动过程中的值是否变化?若不变,求出其值;若变化,请说明理由.
9.如图,抛物线y=ax2+bx+c(a≠0),与x轴交于A(4,0)、O两点,点D(2,﹣2)为抛物线的顶点.
(1)求该抛物线的解析式;
(2)点E为AO的中点,以点E为圆心、以1为半径作⊙E,交x轴于B、C两点,点M为⊙E上一点.
①射线BM交抛物线于点P,设点P的横坐标为m,当tan∠MBC=2时,求m的值;
②如图2,连接OM,取OM的中点N,连接DN,则线段DN的长度是否存在最大值或最小值?若存在,请求出DN的最值;若不存在,请说明理由.
10.如图,在平面直角坐标系xOy中,O为坐标原点,点A(4,0),点B(0,4),△ABO的中线AC与y轴交于点C,且⊙M经过O,A,C三点.
(1)求圆心M的坐标;
(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;
(3)在(2)的条件下,在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=4时,求点P的坐标.
11.如图,已知二次函数的图象顶点在原点,且点(2,1)在二次函数的图象上,过点F(0,1)作x轴的平行线交二次函数的图象于M、N两点.
(1)求二次函数的表达式;
(2)P为平面内一点,当△PMN是等边三角形时,求点P的坐标;
(3)在二次函数的图象上是否存在一点E,使得以点E为圆心的圆过点F和点N,且与直线y=﹣1相切.若存在,求出点E的坐标,并求⊙E的半径;若不存在,说明理由.
12.如图,抛物线y=ax2+bx+2经过A(﹣1,0),B(4,0)两点,与y轴交于点C.
(1)求该抛物线的解析式;
(2)在y轴上是否存在点P使得∠OBP+∠OBC=45°,若存在,求出点P的坐标,若不存在,请说明理由;
(3)点M是BC为直径的圆上的动点,将点M绕原点O顺时针旋转90°得点N,连接NA,求NA的取值范围.
13.定义:平面直角坐标系xOy中,过二次函数图象与坐标轴交点的圆,称为该二次函数的坐标圆.
(1)已知点P(2,2),以P为圆心,为半径作圆.请判断⊙P是不是二次函数y=x2﹣4x+3的坐标圆,并说明理由;
(2)如图1,已知二次函数y=x2﹣4x+4图象的顶点为A,坐标圆的圆心为P,求△POA周长的最小值;
(3)如图2,已知二次函数y=ax2﹣4x+4(0<a<1)图象交x轴于点A,B,交y轴于点C,与坐标圆的第四个交点为D,连结PC,PD.若∠CPD=120°,求a的值.
14.如图1:抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0),与y轴交于点C.动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.
(1)求抛物线的解析式及C点坐标;
(2)连接BM并延长交y轴于点N,连接AN,OM,若AN∥OM,求m的值.
(3)如图2.当m=1时,P是直线l上的点,以P为圆心,PE为半径的圆交直线l于另一点F(点F在x轴上方),若线段AC上最多存在一个点Q使得∠FQE=90°,求点P纵坐标的取值范围.
15.如图,抛物线y=mx2﹣4mx+n(m>0)与x轴交于A,B两点,点B在点A的右侧,抛物线与y轴正半轴交于点C,连接CA、CB,已知tan∠CAO=3,sin∠CBO.
(1)求抛物线的对称轴与抛物线的解析式;
(2)设D为抛物线对称轴上一点,
①当△BCD的外接圆的圆心在△BCD的边上时,求点D的坐标;
②若△BCD是锐角三角形,直接写出点D纵坐标的取值范围.
16.如图,抛物线y=ax2+bx+2与直线AB相交于A(﹣1,0),B(3,2),与x轴交于另一点C.
(1)求抛物线的解析式;
(2)在y上是否存在一点E,使四边形ABCE为矩形,若存在,请求出点E的坐标;若不存在,请说明理由;
(3)以C为圆心,1为半径作⊙O,D为⊙O上一动点,求DADB的最小值
17.如图,在平面直角坐标系中,抛物线yx2+bx+3的对称轴是直线x=2,与x轴相交于A,B两点(点A在点B的左侧),与y轴交于点C.
(Ⅰ)求抛物线的解析式及顶点坐标;
(Ⅱ)M为第一象限内抛物线上的一个点,过点M作MN⊥x轴于点N,交BC于点D,连接CM,当线段CM=CD时,求点M的坐标;
(Ⅲ)以原点O为圆心,AO长为半径作⊙O,点P为⊙O上的一点,连接BP,CP,求2PC+3PB的最小值.
18.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)的顶点为M,经过C(1,1),且与x轴正半轴交于A,B两点.
(1)如图1,连接OC,将线段OC绕点O顺时针旋转,使得C落在y轴的负半轴上,求点C的路径长;
(2)如图2,延长线段OC至N,使得ON,若∠OBN=∠ONA,且,求抛物线的解析式;
(3)如图3,抛物线y=ax2+bx+c的对称轴为直线,与y轴交于(0,5),经过点C的直线l:y=kx+m(k>0)与抛物线交于点C、D,若在x轴上存在P1、P2,使∠CP1D=∠CP2D=90°,求k的取值范围.
19.如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B左边),与y轴交于点C,⊙M是△ABC的外接圆.若抛物线的顶点D的坐标为(1,4).
(1)求抛物线的解析式,及A、B、C三点的坐标;
(2)求⊙M的半径和圆心M的坐标;
(3)如图2,在x轴上有点P(7,0),试在直线BC上找点Q,使B、Q、P三点构成的三角形与△ABC相似.若存在,请直接写出点坐标;若不存在,请说明理由.
压轴题23以圆的新定义为背景阅读材料压轴题-2023年中考数学压轴题专项训练(全国通用): 这是一份压轴题23以圆的新定义为背景阅读材料压轴题-2023年中考数学压轴题专项训练(全国通用),文件包含压轴题23以圆的新定义为背景阅读材料压轴题-2023年中考数学压轴题专项训练全国通用解析版docx、压轴题23以圆的新定义为背景阅读材料压轴题-2023年中考数学压轴题专项训练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共96页, 欢迎下载使用。
压轴题18以圆为背景的几何类比探究压轴问题-2023年中考数学压轴题专项训练(全国通用): 这是一份压轴题18以圆为背景的几何类比探究压轴问题-2023年中考数学压轴题专项训练(全国通用),文件包含压轴题18以圆为背景的几何类比探究压轴问题-2023年中考数学压轴题专项训练全国通用解析版docx、压轴题18以圆为背景的几何类比探究压轴问题-2023年中考数学压轴题专项训练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共107页, 欢迎下载使用。
压轴题16圆与相似三角函数的计算与证明问题-2023年中考数学压轴题专项训练(全国通用): 这是一份压轴题16圆与相似三角函数的计算与证明问题-2023年中考数学压轴题专项训练(全国通用),文件包含压轴题16圆与相似三角函数的计算与证明问题-2023年中考数学压轴题专项训练全国通用解析版docx、压轴题16圆与相似三角函数的计算与证明问题-2023年中考数学压轴题专项训练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共76页, 欢迎下载使用。