2023年辽宁省鞍山市台安县黄沙学校九年级中考数学押题试卷三
展开
这是一份2023年辽宁省鞍山市台安县黄沙学校九年级中考数学押题试卷三,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
鞍山市台安县黄沙学校 2023年中考靠前押题试卷三数学试卷温馨提示:请考生把所有答案都写在答题卡上,写在试卷上不给分,答题要求见答题卡一、选择题(每小题3分,共24分)1.给出下列四个数:-1,0,3.14,,其中为无理数的是( )A. B.0 C. D.2.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为( )A.8.23×10﹣6 B.8.23×10﹣7 C.8.23×106 D.8.23×1073.下列运算正确的是A. B.C. D.4.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为( )A.8 B.6 C.12 D.105.将直线向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A. B. C. D.6.已知圆内接正六边形的边长为a,半径为R,边心距为r,则a:R:r=( )A.1:1: B.2:2: C.1:2:3 D.1:2:7. 在平面直角坐标系中,为坐标原点,的边在轴上,顶点在轴的正半轴上,点在第一象限,将沿轴翻折,使点落在轴上的点处、点恰好为的中点.与交于点.若图象经过点.且.则的值为( )A. B. C. D.8.如图,已知直线与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是( )A.8 B.12 C. D.二、填空题(每小题3分,共24分)9.分解因式:3ax2+6axy+3ay2=_____.10.若关于x的方程x2+6x+k=0有两个相等的实数根,则k的值为 。11.九江某快递公司随着网络的发展,业务增长迅速,完成快递件数从六月份的10万件增长到八月份的12.1万件.假定每月增长率相同,设为x.则可列方程为 .12.若点,,在抛物线上,则,,大小顺序为______.(用“<”号连接)13.已知学校航模组设计制作的火箭模型的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则火箭升空到最高点需要的时间为______.14.某农科所在相同条件下做某种作物种子发芽率的试验,结果如表所示:种子个数n10001500250040008000150002000030000发芽种子个数m8991365224536447272136801816027300发芽种子频率0.8990.9100.8980.9110.9090.9120.9080.910则该作物种子发芽的概率约为_____________.(保留一位小数)15.若二次函数的对称轴是,则关于的方程的解为__________.16.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB-BC→CD向点D运动设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所小示,则AD的长为________. 三、解答题(每小题8分,共16分)17.先化简,再求值:,其中x=1﹣. 18.如图,四边形ABCD为平行四边形,的平分线AE交CD于点F交BC的延长线于点E.(1)求证:;(2)连接BF、AC、DE,当时,求证:四边形ACED是平行四边形. 四、解答题(每小题10分,共20分)19.某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售 个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是 度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数? 20.甲、乙两同学玩转盘游戏时,把质地相同的两个盘A、B分别平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两同学分别同时转动两个转盘各1次,当转盘停止后,指针所在区域的数字之积为偶数时甲胜;数字之积为奇数时乙胜.若指针恰好在分割线上,则需要重新转动转盘.(1)用树状图或列表的方法,求甲获胜的概率;(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由 五、解答题(每小题10分,共20分)21.某校九年级数学兴趣小组的学生进行社会实践活动时,想利用所学的解直角三角形的知识测量教学楼的高度,他们先在点D处用测角仪测得楼顶M的仰角为30°,再沿DF方向前行40米到达点E处,在点E处测得楼顶M的仰角为45°,已知测角仪的高AD为1.5米,请根据他们的测量数据求此楼MF的高(结果精确到0.1m,参考数据:,,) 22.如图,在平面直角坐标系中,菱形的对角线经过原点,与交于点轴于点,点的坐标(-6.3,3)为反比例函数的图象恰好经过两点.(1)求的值及所在直线的表达式;(2)求证:.(3)求的值. 六、解答题(每小题10分,共20分)23.如图①,在平面直角坐标系中,直径为的经过坐标系原点,与轴交于点,与轴交于点.(1)求点的坐标;(2)如图②,过点作的切线交直线于点,求点的坐标;(3)过点作的另一条切线,请直接写出切点的坐标. 24.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加元,每天售出件.(1)请写出与之间的函数表达式;(2)当为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少? 六、解答题(12分)25.已知:如图①,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,点D在线段BC上运动. (1)当AD⊥BC时(如图②),求证:四边形ADCE为矩形;(2)当D为BC的中点时(如图③),求CE的长;(3)当点D从点B运动到点C时,设P为线段DE的中点,求在点D的运动过程中,点P经过的路径长(直接写出结论).
八、解答题(14分)26.如图1,在平面直角坐标系中,抛物线y=ax2﹣4ax﹣6(a>0)与x轴交于A,B两点,且OB=3OA,与y轴交于点C,抛物线的顶点为D,对称轴与x轴交于点E.(1)求该抛物线的解析式,并直接写出顶点D的坐标;(2)如图2,直线y=+n与抛物线交于G,H两点,直线AH,AG分别交y轴负半轴于M,N两点,求OM+ON的值;(3)如图1,点P在线段DE上,作等腰△BPQ,使得PB=PQ,且点Q落在直线CD上,若满足条件的点Q有且只有一个,求点P的坐标.
答案:DBCC ABCC 3a(x+y)2 10.9 11. 12. 13.12 14 0.9 15.3或 16. 417.原式=当x=1﹣时,∴原式=1﹣(1﹣)=;18.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)∵AB=BE,BF⊥AE,∴AF=EF,∵AD∥BC,∴∠ADF=∠ECF,∠DAF=∠AEC,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴CF=DF,∵AF=EF,CF=DF,∴四边形ACED是平行四边形.19.解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:×360°=60°;故答案为2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图:(3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.20.解:(1)画树状图为:共有6种等可能的结果数,其中指针所在区域的数字之积为偶数的结果数为4,所以甲胜的概率==;(2)这个游戏规则对甲、乙双方不公平.理由如下:∵甲胜的概率=,∴乙胜的概率=,∵≠,∴这个游戏规则对甲、乙双方不公平.21.解:设MC=x,∵∠MAC=30°,∴在Rt△MCA中,CA=,∵∠MBC=45°,∴在Rt△MCB中,CB=MC=x,又∵DE=AB=40,∴CA-CB=AB=40,即x-x=40,解得:x=20+20≈54.6,∴MF=MC+FC≈54.6+1.5=56.1(米).答:此楼MF的高约为56.1米.22.解:(1)∵在菱形中,对角线与互相垂直且平分,,经过原点,且反比例函数的图象恰好经过两点,由反比例函数图象的对称性知:, . 点的坐标为,点的坐标为,,则; 设直线的表达式为,将点代入得,∴直线的表达式为, 设直线的表达式为,于点,将点及,代入,得:, 直线的表达式为. (2)证明:由条件得,, , ;(3),又与关于原点对称, 在中,,从而. 则.23.解:(1)如图①,连接,,是的直径,,.;(2)如图②,过点作轴于点,为的切线,,.在中,,;(3)由(2)得,,是的切线,又,24.(1)根据题意得,;(2)根据题意得,,解得:,,∵每件利润不能超过60元,∴,答:当为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,,∵,∴当时,随的增大而增大,∴当时,,答:当为20时最大,最大值是2400元25.(1)∵AD⊥BC,∠DAE=90°,∴∠ADB=∠ADC=∠DAE=90°,∴AE∥CD,∵△ABC∽△ADE,∴∠AED=∠ACB,∵AD=DA,∴△ADC≌△DAE,∴AE=DC,∴四边形ADCE为平行四边形,∵∠ADC=90°,∴平行四边形ADCE为矩形; (2)∵∠BAC=90°,AB=6,AC=8,∴BC=10,∵D为BC的中点,∴ AD=BD==5,∵△ABC∽△ADE,∴,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△ABD∽△ACE,∴=,即,∴CE=;(3)如图,设BC中点为M,CE的中点为Q,连接MQ,当点D在点B时,M即为DE的中点,当点D与点C重合时,DE的中点即为CE的中点,此时MQ的长即为点P经过的路径长,∵△ABC∽△ADE,AB=6,AC=8,∴,即,∴AE=,∵∠BAC=∠DAE=90°,∴∠BAE=180°,即点B、A、E共线,∴BE=AB+AE=,∴MQ=BE=,即点P经过的路径长为.26.(1)∵抛物线y=ax2﹣4ax﹣6与x轴交于A,B两点,OB=3OA∴设A(﹣t,0),B(3t,0)(t>0)∴ 解得:∴抛物线解析式为y=x2﹣2x﹣6=(x﹣2)2﹣8∴顶点D的坐标为(2,﹣8)(2)∵t=2∴A(﹣2,0)设抛物线上的点G(x1,x12﹣2x1﹣6),H(x2,x22﹣2x2﹣6)∵直线y=+n与抛物线交于G,H两点∴ 整理得:x2﹣3x﹣12﹣2n=0∴x1+x2=3设直线AG解析式为y=kx+b,即N(0,b)(b<0)∴①×x1得:﹣2kx1+bx1=0 ③②×2得:2kx1+2b=x12﹣4x1﹣12 ④③+④得:(x1+2)b=(x1+2)(x1﹣6)∵点G与A不重合,即x1+2≠0∴b=x1﹣6即ON=﹣b=6﹣x1同理可得:OM=6﹣x2∴OM+ON=6﹣x2+6﹣x1=12﹣(x1+x2)=12﹣3=9(3)如图,过点C作CF⊥DE于点F,以点P为圆心、PB为半径作圆∵PB=PQ∴点Q在⊙P上∵有且只有一个点Q在⊙P上又在直线CD上∴⊙P与直线CD相切于点Q∴PQ⊥CD由(1)得:B(6,0),C(0,﹣6),D(2,﹣8)∴CF=2,DF=﹣6﹣(﹣8)=2,即CF=DF∴∠CDF=45°∴△DPQ为等腰直角三角形∴PD=PQ∴PD2=2PQ2=2PB2设P(2,p)(﹣8≤p≤0)∴PD=p+8,PB2=(6﹣2)2+p2=16+p2∴(p+8)2=16+p2解得:p1=8﹣4,p2=8+4(舍去)∴点P坐标为(2,8﹣4)
相关试卷
这是一份2024年辽宁省鞍山市台安县部分学校中考数学一模试卷 含解析,共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年辽宁省鞍山市台安县部分学校中考模拟(一模)数学试题(原卷版+解析版),文件包含精品解析2024年辽宁省鞍山市台安县部分学校中考模拟一模数学试题原卷版docx、精品解析2024年辽宁省鞍山市台安县部分学校中考模拟一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
这是一份辽宁省鞍山市台安县部分学校2023-2024年中考模拟(一模)数学试题.1,共12页。