广东省东莞市东华高级中学2020-2021学年高二下学期期末数学试题(学生版)
展开2020-2021学年广东省东莞市东华高级中学高二(下)期末数学试卷
一、选择题(共8小题,每小题5分,共40分).
1. 已知集合则( )
A. B. C. D.
2. 已知为虚数单位,若复数,则
A. 1 B. 2 C. D.
3. 设,是两条不同的直线,,是两个不同的平面,:,若是的必要条件,则可能是( )
A. :,, B. :,,
C. :,, D. :,,
4. 下图上半部分为一个油桃园.每年油桃成熟时,园主都需要雇佣人工采摘,并沿两条路径将采摘好的油桃迅速地运送到水果集散地处销售.路径1:先集中到处,再沿公路运送;路径2:先集中到处,再沿公路运送.园主在果园中画定了一条界线,使得从该界线上的点出发,按这两种路径运送油桃至处所走路程一样远.已知,,若这条界线是曲线的一部分,则曲线为( )
A. 圆 B. 椭圆 C. 抛物线 D. 双曲线
5. 设为随机变量,且,若随机变量的方差,则
A. B. C. D.
6. 东莞市同沙生态公园水绕山环,峰峦叠嶂,是一个天生丽质,融山水生态与人文景观为一体的新型公园.现有甲乙两位游客慕名来到同沙生态公园旅游,分别准备从映翠湖、十里河塘、计生雕塑园和鹭鸟天堂4个旅游景点中随机选择其中一个景点游玩.记事件:甲和乙至少一人选择映翠湖,事件:甲和乙选择的景点不同,则条件概率( )
A. B. C. D.
7. 已知函数为上的偶函数,且对于任意的满足,则下列不等式成立的是( )
A. B.
C. D.
8. “帷幄”是古代打仗必备的帐篷,又称“幄帐”.如图是一种幄帐示意图,帐顶采用“五脊四坡式”,四条斜脊的长度相等,一条正脊平行于底面.若各斜坡面与底面所成二面角的正切值均为,底面矩形的长与宽之比为,则正脊与斜脊长度的比值为( )
A B. C. D. 1
二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.
9. 将曲线:上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线:,则下列结论正确的是( )
A.
B. 为一条对称轴
C. 在上有4个零点
D. 在上单调递增
10. 如图,在棱长为的正方体中,为的中点,为上任意一点,、为上两点,且的长为定值,则下面四个值中是定值的是( )
A. 点到平面的距离 B. 直线与平面所成的角
C. 三棱锥的体积 D. 的面积
11. 设随机变量的分布列如表:
1 | 2 | 3 | … | 2020 | 2021 | |
… |
则下列说法正确的是( )
A. 当等差数列时,
B. 数列的通项公式可能为
C. 当数列满足时,
D. 当数列满足时,
12. 2021年3月30日,小米正式开始启用具备“超椭圆”数学之美的新.设计师的灵感来源于曲线.则下列说法正确的是( )
A. 曲线关于原点成中心对称
B. 当时,曲线上的点到原点的距离的最小值为2
C. 当时,曲线所围成图形的面积的最小值为
D. 当时,曲线所围成图形的面积小于4
三、填空题:本大题共4小题,每小题5分,共20分.
13. 某校机器人兴趣小组有男生3名,女生2名,现从中随机选出3名参加一个机器人大赛,则选出的人员至少有一名女生的选法有___种.
14. 在的展开式中含的项系数为________.
15. 已知双曲线:的左、右焦点分别为,,点在双曲线的左支上,且,,则双曲线的离心率为__________.
16. 若存在,满足,则实数的取值范围为________.
四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.
17. 的内角,,的对边分别为,,,.
(1)求;
(2)若,求周长最大值.
18. 已知首项为2的数列中,前n项和满足.
(1)求实数t的值及数列的通项公式;
(2)将①,②,③三个条件任选一个补充在题中,求数列的前n项和.
注:如果选择多个条件分别解答,按第一个解答计分.
19. 如图,三棱柱中,平面平面,和都是正三角形,是中点.
(1)求证:平面;
(2)求二面角的余弦值.
20. 2020年10月,中共中央办公厅、国务院办公厅印发了《关于全面加强和改进新时代学校体育工作的意见》,某地积极开展中小学健康促进行动,决定在2021年体育中考中再增加定的分数,规定:考生须参加游泳、长跑、一分钟跳绳三项测试,其中一分钟跳绳满分20分,某校在初三上学期开始要掌握全年级学生一分钟跳绳情况,随机抽取了100名学生进行测试,得到如图所示频率分布直方图,且规定计分规则如下表:
每分钟跳绳个数 | ||||
得分 | 17 | 18 | 19 | 20 |
(1)现从样本的100名学生中任意选取2人,求两人得分之和不大于35分的概率;
(2)根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,整体成绩差异略有变化.假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,方差为169,且该校初三年级所有学生正式测试时每分钟的跳绳个数服从正态分布,用样本数据的期望和方差估计总体的期望和方差(各组数据用区间的中点值代替).
①若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为,求随机变量的分布列和期望;
②判断该校初三年级所有学生正式测试时的满分率是否能达到85%,说明理由.
附:若随机变量服从正态分布,则,.
21. 在平面直角坐标系中,已知椭圆:的长轴长为4,且经过点.为左顶点,为下顶点,椭圆上的点在第一象限,交轴于点,交轴于点.
(1)求椭圆的标准方程;
(2)若,求线段的长;
(3)试问:四边形的面积是否为定值?若是,求出该定值;若不是,请说明理由.
22 已知函数.
(1)判断的单调性,并比较与的大小;
(2)若函数,其中,判断的零点的个数,并说明理由.
参考数据:.
2023-2024学年广东省东莞市东华高级中学、东华松山湖高级中学高一上学期12月月考数学试题(含解析): 这是一份2023-2024学年广东省东莞市东华高级中学、东华松山湖高级中学高一上学期12月月考数学试题(含解析),共21页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
广东省东莞市东莞市东华高级中学2023-2024学年高二上学期开学考试数学试题(含答案): 这是一份广东省东莞市东莞市东华高级中学2023-2024学年高二上学期开学考试数学试题(含答案),共19页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
广东省东莞市东华高级中学、东华松山湖高级中学2023-2024学年高一上学期10月月考数学试题: 这是一份广东省东莞市东华高级中学、东华松山湖高级中学2023-2024学年高一上学期10月月考数学试题,共9页。试卷主要包含了命题“”的否定为,不等式的解集为,定义在上的函数满足,已知集合,则实数的值可以是等内容,欢迎下载使用。