搜索
    上传资料 赚现金
    英语朗读宝

    北师版八年级数学下册课件 第六章 小结与复习

    北师版八年级数学下册课件 第六章 小结与复习第1页
    北师版八年级数学下册课件 第六章 小结与复习第2页
    北师版八年级数学下册课件 第六章 小结与复习第3页
    北师版八年级数学下册课件 第六章 小结与复习第4页
    北师版八年级数学下册课件 第六章 小结与复习第5页
    北师版八年级数学下册课件 第六章 小结与复习第6页
    北师版八年级数学下册课件 第六章 小结与复习第7页
    北师版八年级数学下册课件 第六章 小结与复习第8页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师版八年级数学下册课件 第六章 小结与复习

    展开

    这是一份北师版八年级数学下册课件 第六章 小结与复习,共26页。
    小结与复习 八年级数学下(BS) 教学课件第六章 平行四边形要点梳理考点讲练课堂小结课后作业几 何 语 言文字叙述对边平行对边相等对角相等∴ AD=BC ,AB=DC.∵ 四边形ABCD是平行四边形, ∴ ∠ A=∠C,∠ B=∠D.∵ 四边形ABCD是平行四边形, 一、平行四边形的性质要点梳理对角线互相平分∵ 四边形ABCD是平行四边形, ∴ OA=OC,OB=OD.∵ 四边形ABCD是平行四边形, ∴ AD∥BC ,AB∥DC.平行四边形是中心对称图形.几 何 语 言文字叙述两组对边相等一组对边平行且相等 ∴四边形ABCD是平行四边形. ∵ AD=BC ,AB=DC,∴ 四边形ABCD是平行四边形.∵ AB=DC,AB∥DC,二、平行四边形的判定对角线互相平分∴ 四边形ABCD是平行四边形. ∵ OA=OC,OB=OD,两组对边分别平行(定义)∵ 四边形ABCD是平行四边形. ∴ AD∥BC ,AB∥DC,平行线之间的距离处处相等1.三角形的中位线定义:连结三角形两边中点的线段叫做三角形的中位线.2.三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.三、三角形的中位线用符号语言表示∵DE是△ABC的中位线∴DE∥BC,四、多边形的内角和与外角和多边形的内角和等于(n-2) ×180 °多边形的外角和等于 360 °正多边形每个内角的度数是正多边形每个外角的度数是考点讲练例1 如图,在平行四边形ABCD中,下列结论中错误的是(  )A.∠1=∠2 B.∠BAD=∠BCD C.AB=CD D.AC=BC 【解析】A.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠1=∠2,故A正确;B.∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,故B正确;C.∵四边形ABCD是平行四边形,∴AB=CD,故C正确;D 主要考查了平行四边形的性质,关键是掌握平行四边形对边相等且平行,对角相等.1.如图,已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AD=BC,AB=CD,∠BAD=∠BCD,(平行四边形的对角相等,对边相等)∵AE平分∠BAD,CF平分∠BCD,∴∠EAB= ∠BAD,∠FCD= ∠BCD,∴∠EAB= ∠FCD,在△ABE和△CDF中 ∠B=∠D AB=CD ∠EAB=∠FCD ∴△ABE≌△CDF,∴BE=DF.∵AD=BC ∴AF=EC.例2 如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为(  )A.4cm B.5cm C.6cm D.8cm 【解析】∵四边形ABCD是平行四边形,AC=10cm,BD=6cm∴OA=OC= AC=5cm,OB=OD= BD=3cm,∵∠ODA=90°,∴AD= =4cm.A 主要考查了平行四边形的性质,平行四边形的对角线互相平分,解题时还要注意勾股定理的应用.【解析】∵在▱ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,∴AO=CO=12cm,BO=19cm,AD=BC=28cm,∴△BOC的周长是:BO+CO+BC=12+19+28=51(cm).2.如图,在▱ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,则△BOC的周长是(  )A.45cm B.59cm C.62cm D.90cm B例3 如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形(  )A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CD C.AD∥BC,AD=BC D.AB=CD,AO=CO D 平行四边形的判定方法:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.3.如图,点D、C在BF上,AC∥DE,∠A=∠E,BD=CF,(1)求证:AB=EF.(1)证明:∵AC∥DE,∴∠ACD=∠EDF,∵BD=CF,∴BD+DC=CF+DC,即BC=DF,又∵∠A=∠E,∴△ABC≌△EFD(AAS),∴AB=EF;(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.(2)猜想:四边形ABEF为平行四边形,理由如下:由(1)知△ABC≌△EFD,∴∠B=∠F,∴AB∥EF,又∵AB=EF,四边形ABEF为平行四边形.(一组对边平行且相等的四边形是平行四边形)例4 如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.求证:四边形AECF是平行四边形.证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,(平行四边形的对边平行且相等)∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形. 本题考查了平行四边形的性质和判定的应用,注意平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.4.如图,在四边形ABCD中,对角线AC、BD相交于点O,E、F分别是BO、OD的中点,且四边形AECF是平行四边形,试判断四边形ABCD是不是平行四边形,并说明理由.证明:∵平行四边形AECF,∴OA=OC,OE=OF,(平行四边形的对角线互相平分)∵E、F分别是BO、OD的中点,∴2OE=2OF,即OB=OC,∵OA=OC,∴四边形ABCD是平行四边形.(对角线互相平分的四边形是平行四边形)例5 已知:AD是△ABC的中线,E是AD的中点,F是BE的延长线与AC的交点。求证: . 证明:过点D作DH∥BF,交AC于点H. ∵AD是△ABC的中线 ∴D是BC的中点 ∴CH=HF= CF ∵E是AD的中点,EF∥DH ∴AF=FH. ∴AF= FCABCDEFH5.若三角形的三条中位线之比为 6 : 5 : 4 ,三角形的周长为 60 cm,那么该三角形中最长边的边长为___;解析:设三角形的三条中位线之长分别为6x,5x,4x,则三角形的三条边长之长分别为12x,10x,8x,依题意有 12x+10x+8x=60,解得 x=2.所以,最长边12x=24(cm).24 cm解: 设此多边形的外角的度数为x,则内角的度数为4x, 则x+4x=180°,解得 x=36°.∴边数n=360°÷36°=10.6.一个正多边形的每一个内角都等于120 °,则其边数是 .6【解析】 因为该多边形的每一个内角都等于120度,所以它的每一个外角都等于60 °.所以边数是6. 在多边形的有关求边数或内角、外角度数的问题中,要注意内角与外角之间的转化,以及定理的运用.尤其在求边数的问题中,常常利用定理列出方程,进而再求得边数.平 行 四 边 形性质①对边平行且相等②对角相等,邻角互补③对角线互相平分判别①两组对边分别平行的②两组对边分别相等的③一组对边平行且相等的④对角线互相平分的四 边 形课堂小结三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.多边形的内角和与外角和内角和计算公式(n-2) × 180 °(n ≥3的整数) 外角和多边形的外角和等于360°特别注意:与边数无关。正多边形课后作业见章末练习

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map