所属成套资源:2022北京西城区高一下学期期末及答案(九科)
2022北京西城区高一下学期期末数学试题含解析
展开
这是一份2022北京西城区高一下学期期末数学试题含解析,文件包含北京市西城区2021-2022学年高一下学期期末数学试题含解析docx、北京市西城区2021-2022学年高一下学期期末数学试题无答案docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
北京市西城区2021—2022学年度第二学期期末试卷高一数学2022.7一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 在复平面内,复数对应的点在( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2. 设向量,,则( )A. -11 B. -9 C. -7 D. -53. 设,为两条直线,,为两个平面.若,,,则( )A. B. C. D. 以上答案都不对4 若,则( )A. B. C. D. 5. 函数,的最大值和最小值分别为( )A. 1,-1 B. , C. 1, D. 1,6. 在中,若,则实数的取值范围是( )A. B. C. D. 7. 已知向量,满足,,,那么向量,的夹角为( )A. B. C. D. 8. 函数的图像( )A. 关于原点对称 B. 关于轴对称C. 关于直线对称 D. 关于点对称9. 设,则“”是“”的( )A 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件 D. 既不充分也不必要条件10. 如图,正方形的边长为2,为正方形四条边上的一个动点,则的取值范围是( )A. B. C. D. 二、填空题共5小题,每小题5分,共25分.11. 设复数满足,则___________.12. 在中,,,,则___________.13. 已知长方体的棱长分别为3,4,5,长方体的各个顶点都在一个球面上,则该球的表面积等于_______________.14. 在直角中,斜边,则___________.15. 已知为常数,,关于的方程有以下四个结论:①当时,方程有2个实数根;②存在实数,使得方程有4个实数根;③使得方程有实数根的的取值范围是;④如果方程共有个实数根,记的取值集合为,那么,.其中,所有正确结论的序号是___________.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 在平面直角坐标系中,角以为始边,终边经过点.(1)求的值;(2)求的值.17. 如图,在四棱锥中,平面,,,,E为PD中点.(1)若,求四棱锥的体积;(2)求证:平面;(3)求证:平面.18. 在中,,,从①;②;③这三个条件中任选一个作为题目的已知条件.(1)求的值;(2)求的面积.注:如果选择多个条件分别解答,按第一个解答计分19. 已知函数.(1)求的最小正周期;(2)设,若函数在区间上单调递增,求最大值.20. 如图,在正方体中,,为上底面的中心.(1)求证:;(2)求点到平面的距离;(3)判断棱上是否存在一点,使得?并说明理由.21. 设函数的定义域为,其中常数.若存在常数,使得对任意的,都有,则称函数具有性质.(1)当时,判断函数和是否具有性质?(结论不要求证明)(2)若,函数具有性质,且当时,,求不等式的解集;(3)已知函数具有性质,,且的图像是轴对称图形.若在上有最大值,且存在使得,求证:其对应的.
相关试卷
这是一份2023年北京西城区高一下学期期末数学试题及答案,共10页。
这是一份2022-2023学年北京西城区高一下学期期末数学试题及答案,共10页。
这是一份2022北京朝阳区高一下学期期末数学试题含解析,文件包含北京市朝阳区2021-2022学年高一下学期期末质量检测数学试题含解析docx、北京市朝阳区2021-2022学年高一下学期期末质量检测数学试题无答案docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。