2024高考物理大一轮复习课件 第七章 专题强化十 碰撞模型的拓展
展开1.会分析、计算“滑块—弹簧”模型有关问题.2.理解“滑块—斜(曲)面”模型与碰撞的相似性,会解决相关问题.
题型一 “滑块—弹簧”模型
题型二 “滑块—斜(曲)面”模型
2.模型特点(1)动量守恒:两个物体与弹簧相互作用的过程中,若系统所受外力的矢量和为零,则系统动量守恒.(2)机械能守恒:系统所受的外力为零或除弹簧弹力以外的内力不做功,系统机械能守恒.(3)弹簧处于最长(最短)状态时两物体速度相同,弹性势能最大,系统动能通常最小(相当于完全非弹性碰撞,两物体减少的动能转化为弹簧的弹性势能).(4)弹簧恢复原长时,弹性势能为零,系统动能最大(相当于刚完成弹性碰撞).
例1 (2023·江西南昌市模拟)如图所示,一个轻弹簧的两端与质量分别为m1和m2的两物体甲、乙连接,静止在光滑的水平面上.现在使甲瞬间获得水平向右的速度v0=4 m/s,当甲物体的速度减小到1 m/s时,弹簧最短.下列说法中正确的是A.此时乙物体的速度大小为1 m/sB.紧接着甲物体将开始做加速运动C.甲、乙两物体的质量之比m1∶m2=1∶4D.当弹簧恢复原长时,乙物体的速度大小为4 m/s
根据题意可知,当弹簧压缩到最短时,两物体速度相同,所以此时乙物体的速度大小也是1 m/s,A正确;因为弹簧压缩到最短时,甲受力向左,甲继续减速,B错误;根据动量守恒定律可得m1v0=(m1+m2)v,解得m1∶m2=1∶3,C错误;
例2 (多选)如图甲所示,一个轻弹簧的两端与质量分别为m1和m2的两物块A、B相连接并静止在光滑的水平地面上.现使A以3 m/s的速度向B运动压缩弹簧,A、B的速度—时间图像如图乙,则有A.在t1、t3时刻两物块达到共同速度1 m/s,且弹簧都处于压缩状态B.从t3到t4过程中,弹簧由压缩状态恢复原长C.两物块的质量之比m1∶m2=1∶2D.在t2时刻A与B的动能之比Ek1∶Ek2=1∶8
开始时A逐渐减速,B逐渐加速,弹簧被压缩,t1时刻二者速度相同,系统动能最小,势能最大,弹簧被压缩到最短,然后弹簧逐渐恢复原长,B仍然加速,A先减速为零,然后反向加速,t2时刻,弹簧恢复原长,由于此时两物块速度方向相反,因此弹簧的长度将逐渐增大,两物块均减速,A减为零后又向B运动的方向加速,在t3时刻,两物块速度相同,系统动能最小,弹簧最长,因此从t3到t4过程中,弹簧由伸长状态恢复原长,故A、B错误;
根据动量守恒定律,t=0时刻和t=t1时刻系统总动量相等,有m1v1=(m1+m2)v2,其中v1=3 m/s,v2=1 m/s,解得m1∶m2=1∶2,故C正确;在t2时刻A的速度为vA=-1 m/s,B的速度为vB=2 m/s,根据Ek= mv2,且m1∶m2=1∶2,求出Ek1∶Ek2=1∶8,故D正确.
例3 (2022·全国乙卷·25改编)如图(a),一质量为m的物块A与轻质弹簧连接,静止在足够长光滑水平面上;物块B向A运动,t=0时与弹簧接触,到t=2t0时与弹簧分离,碰撞结束,A、B的v-t图像如图(b)所示.已知从t=0到t=t0时间内,物块A运动的距离为0.36v0t0.碰撞过程中弹簧始终处于弹性限度内.求:
(1)碰撞过程中,弹簧弹性势能的最大值;
当弹簧被压缩至最短时,弹簧弹性势能最大,此时A、B速度相等,即在t=t0时刻,根据动量守恒定律有mB·1.2v0=(mB+m)v0根据能量守恒定律有
联立解得mB=5m,Epmax=0.6 mv02
(2)碰撞过程中,弹簧压缩量的最大值.
答案 0.768v0t0
B接触弹簧后,压缩弹簧的过程中,A、B动量守恒,有mB·1.2v0=mBvB+mvA对方程两边同时乘以时间Δt,有6mv0Δt=5mvBΔt+mvAΔt0~t0之间,根据位移等于速度在时间上的累积,可得6mv0t0=5msB+msA,将sA=0.36v0t0代入可得sB=1.128v0t0则碰撞过程中,弹簧压缩量的最大值Δs=sB-sA=0.768v0t0.
“滑块—斜(曲)面”模型
例4 (多选)质量为M的带有 光滑圆弧轨道的小车静止置于光滑水平面上,如图所示,一质量也为M的小球以速度v0水平冲上小车,到达某一高度后,小球又返回小车的左端,重力加速度为g,则A.小球以后将向左做平抛运动B.小球将做自由落体运动C.此过程小球对小车做的功为 Mv02D.小球在圆弧轨道上上升的最大高度为
例5 (多选)(2023·山东济南市模拟)如图所示,质量为2 kg的四分之一圆弧形滑块P静止于水平地面上,其圆弧底端与水平地面相切.在滑块P右侧有一固定的竖直弹性挡板,将一质量为1 kg的小球Q从滑块顶端正上方距地面1.2 m处由静止释放,小球Q恰能沿切线落入滑块P.小球与挡板的碰撞为弹性碰撞,所有接触面均光滑,重力加速度取g=10 m/s2.下列说法正确的是A.若滑块P固定,小球Q能回到高1.2 m处B.若滑块P固定,小球Q第一次与挡板碰撞过程挡板 对小球的冲量大小为C.若滑块P不固定,小球Q第一次与挡板碰撞前的速度大小为4 m/sD.若滑块P不固定,经过多次碰撞后,滑块的最终速度大小为3 m/s
若滑块P固定,由于小球在各个环节无机械能损失,可知小球Q能回到高1.2 m处,选项A正确;
例6 如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3 m(h小于斜面体的高度).已知小孩与滑板的总质量为m1=30 kg,冰块的质量为m2=10 kg,小孩与滑板始终无相对运动.重力加速度的大小取g=10 m/s2.
(1)求斜面体的质量;
规定向左为正方向.冰块在斜面体上上升到最大高度时两者达到共同速度,设此共同速度为v,斜面体的质量为m3.对冰块与斜面体分析,由水平方向动量守恒和机械能守恒得m2v0=(m2+m3)v ①
式中v0=3 m/s为冰块推出时的速度,联立①②式并代入题给数据得v=1 m/s,m3=20 kg③
(2)通过计算判断,冰块与斜面体分离后能否追上小孩?
答案 不能,理由见解析
设小孩推出冰块后的速度为v1,对小孩与冰块分析,由动量守恒定律有m1v1+m2v0=0④代入数据得v1=-1 m/s⑤设冰块与斜面体分离后的速度分别为v2和v3,对冰块与斜面体分析,由动量守恒定律和机械能守恒定律有m2v0=m2v2+m3v3⑥
联立③⑥⑦式并代入数据得v2=-1 m/s⑧由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且冰块处在小孩后方,故冰块不能追上小孩.
1.(多选)(2023·广东东莞市高三检测)如图所示,弹簧一端固定在竖直墙上,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量为2m的小球从槽高h处自由下滑,则下列说法正确的是A.在下滑过程中,小球和槽组成的系统水平方向上 动量守恒B.在下滑过程中,小球和槽组成的系统机械能守恒C.被弹簧反弹后,小球和槽都做速率不变的直线运动D.被弹簧反弹后,小球和槽组成的系统机械能守恒,小球能回到槽高h处
槽处于光滑水平面上,则小球在下滑过程中,小球和槽组成的系统水平方向所受合外力为零,则水平方向上动量守恒,选项A正确;在下滑过程中,小球和槽组成的系统只有重力做功,则机械能守恒,选项B正确;球下滑到底端时由动量守恒定律可知mv1=2mv2,解得v1=2v2,球被弹簧反弹后,小球的速度小于槽的速度,小球不能再次追上槽,因水平面光滑,则小球和槽都做速率不变的直线运动,选项C正确,D错误.
2.(多选)如图所示,质量为M的楔形物体静止在光滑的水平地面上,其斜面光滑且足够长,与水平方向的夹角为θ.一个质量为m的小物块从斜面底端以初速度v0沿斜面向上开始运动.当小物块沿斜面向上运动到最高点时,速度大小为v,距地面高度为h,重力加速度为g,则下列关系式中正确的是A.mv0=(m+M)v B.mv0cs θ=(m+M)v
小物块上升到最高点时,小物块相对楔形物体静止,所以小物块与楔形物体有共同速度,且都为v,沿水平方向,二者组成的系统在水平方向上动量守恒,全过程机械能守恒,以水平向右为正方向,在小物块上升过程中,由水平方向系统动量守恒得mv0cs θ=(m+M)v,故A错误,B正确;
3.(多选)如图所示,光滑水平地面上有A、B两物体,质量都为m,B左端固定一个处在压缩状态的轻弹簧,轻弹簧被装置锁定,当弹簧再受到压缩时锁定装置会失效.A以速率v向右运动,当A撞上弹簧后,设弹簧始终不超过弹性限度,关于它们后续的运动过程,下列说法正确的是A.A物体最终会静止,B物体最终会以速率v向右运动B.A、B系统的总动量最终将大于mvC.A、B系统的总动能最终将大于 mv2D.当弹簧的弹性势能最大时,A、B的总动能为 mv2
系统水平方向动量守恒,知A、B系统的总动量最终等于mv,故B错误;
4.(2023·山西运城市高三检测)如图所示,在光滑的水平地面上有一静止的质量为M的四分之一光滑圆弧滑块,圆弧的半径为R,最低点处刚好与水平地面相切.一质量为m的小球以一定的初速度v0沿水平地面向右运动,不计小球冲上圆弧滑块过程中的机械能损失.如果圆弧滑块固定,则小球恰能冲到圆弧面上与圆心等高处;如果圆弧滑块不固定,则小球在圆弧面上能到达的最大高度为 .则小球与滑块质量之比m∶M为A.1∶2 B.1∶3C.2∶1 D.3∶1
5.如图所示,光滑弧形滑块P锁定在光滑水平地面上,其弧形底端切线水平,小球Q(视为质点)的质量为滑块P的质量的一半,小球Q从滑块P顶端由静止释放,Q离开P时的动能为Ek1.现解除锁定,仍让Q从滑块顶端由静止释放,Q离开P时的动能为Ek2,Ek1和Ek2的比值为
6.如图,在光滑的水平面上静止放一个质量为m的木板B,木板表面光滑,左端固定一个轻质弹簧.质量为2m的木块A以速度v0从板的右端水平向左滑上木板B.当木块A与弹簧相互作用的过程中,下列判断正确的是
弹簧压缩量先增大后减小,则B板受到的弹簧弹力先增大后减小,B板的加速度先增大后减小,A错误;在木块A与弹簧相互作用的过程中,弹簧一直处于压缩状态,B板一直在加速,所以弹簧恢复原长时,B板运动速率最大,B错误;
7.(多选)如图甲所示,在光滑水平面上,轻质弹簧一端固定,物体A以速度v0向右运动压缩弹簧,测得弹簧的最大压缩量为x.现让弹簧一端连接另一质量为m的物体B(如图乙所示),物体A以2v0的速度向右压缩弹簧,测得弹簧的最大压缩量仍为x,则
8.(多选)(2023·重庆市名校联考)如图所示,A、B、C三个半径相等的刚性小球穿在两根平行且光滑的足够长的杆上,三个球的质量分别为mA=2 kg、mB=3 kg、mC=2 kg,初状态三个小球均静止,B、C两球之间连着一根轻质弹簧,弹簧处于原长状态.现给A球一个向左的初速度v0=10 m/s,A、B两球碰后A球的速度变为方向向右、大小为2 m/s.下列说法正确的是A.球A和球B间的碰撞是弹性碰撞B.球A和球B碰后,弹簧恢复到原长时球C的速度大小为 9.6 m/sC.球A和球B碰后,球B的最小速度为1.6 m/sD.球A和球B碰后,弹簧的最大弹性势能可以达到96 J
A、B两球碰撞过程中A、B两球组成的系统动量守恒,以向左为正方向,
则A、B两球碰撞过程中系统的机械能守恒,因此球A和球B间的碰撞是弹性碰撞,A正确;
由于B、C两球及弹簧组成的系统在运动的过程中满足动量守恒定律和机械能守恒定律,
联立解得v3=1.6 m/s,v4=9.6 m/s,因此B球的最小速度为1.6 m/s,此时C球的速度大小为9.6 m/s,B、C正确;
10.如图所示,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H=5 m的光滑水平桌面上.现有一滑块A从光滑曲面上离桌面高h=1.8 m处由静止开始滑下,与滑块B发生碰撞并粘在一起压缩弹簧推动滑块C向前运动,经过一段时间,滑块C脱离弹簧,继续在水平桌面上匀速运动,一段距离后从桌面边缘飞出.已知mA=1 kg,mB=2 kg,mC=3 kg,滑块A、B、C均可看作质点,取g=10 m/s2,不计空气阻力.求:
(1)滑块A与滑块B碰撞结束瞬间的速度大小;
滑块A从光滑曲面上高h处由静止开始滑下的过程中机械能守恒,设其滑到水平桌面时的速度大小为v1,由机械能守恒定律有mAgh= mAv12,解得v1=6 m/s滑块A与B碰撞的过程,A、B系统的动量守恒,取水平向右为正方向,碰撞结束瞬间具有共同速度,设为v2,由动量守恒定律有mAv1=(mA+mB)v2,解得v2= v1=2 m/s
(2)被压缩弹簧的最大弹性势能;
滑块A、B发生碰撞后与滑块C一起压缩弹簧,压缩的过程中机械能守恒,被压缩弹簧的弹性势能最大时,滑块A、B、C速度相同,设为v3,取水平向右为正方向,由动量守恒定律有mAv1=(mA+mB+mC)v3,
代入数据解得Ep=3 J
(3)滑块C落地点与桌面边缘的水平距离.
被压缩弹簧再次恢复自然长度时,滑块C脱离弹簧,设此时滑块A、B的速度为v4,滑块C的速度为v5,取水平向右为正方向,由动量守恒定律和机械能守恒定律有(mA+mB)v2=(mA+mB)v4+mCv5
联立解得v4=0,v5=2 m/s滑块C从桌面边缘飞出后做平抛运动
2024版新教材高考物理全程一轮总复习第七章碰撞与动量守恒专题强化七碰撞模型的拓展课件: 这是一份2024版新教材高考物理全程一轮总复习第七章碰撞与动量守恒专题强化七碰撞模型的拓展课件,共34页。PPT课件主要包含了答案D,答案BC,答案C,答案A等内容,欢迎下载使用。
2024年高考物理一轮复习(新人教版) 第7章 专题强化10 碰撞模型的拓展: 这是一份2024年高考物理一轮复习(新人教版) 第7章 专题强化10 碰撞模型的拓展,文件包含2024年高考物理一轮复习新人教版第7章专题强化10碰撞模型的拓展pptx、2024年高考物理一轮复习新人教版第7章专题强化10碰撞模型的拓展docx、第7章专题强化练10碰撞模型的拓展docx等3份课件配套教学资源,其中PPT共60页, 欢迎下载使用。
高考物理一轮复习课件+讲义 第7章 专题强化11 碰撞模型及拓展: 这是一份高考物理一轮复习课件+讲义 第7章 专题强化11 碰撞模型及拓展,文件包含高考物理一轮复习第7章专题强化11碰撞模型及拓展pptx、高考物理一轮复习第7章专题强化11碰撞模型及拓展docx等2份课件配套教学资源,其中PPT共60页, 欢迎下载使用。