年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年高考数学一轮复习(新高考版) 第10章 §10.3 二项式定理课件PPT

    2024年高考数学一轮复习(新高考版) 第10章 §10.3 二项式定理课件PPT第1页
    2024年高考数学一轮复习(新高考版) 第10章 §10.3 二项式定理课件PPT第2页
    2024年高考数学一轮复习(新高考版) 第10章 §10.3 二项式定理课件PPT第3页
    2024年高考数学一轮复习(新高考版) 第10章 §10.3 二项式定理课件PPT第4页
    2024年高考数学一轮复习(新高考版) 第10章 §10.3 二项式定理课件PPT第5页
    2024年高考数学一轮复习(新高考版) 第10章 §10.3 二项式定理课件PPT第6页
    2024年高考数学一轮复习(新高考版) 第10章 §10.3 二项式定理课件PPT第7页
    2024年高考数学一轮复习(新高考版) 第10章 §10.3 二项式定理课件PPT第8页
    还剩51页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年高考数学一轮复习(新高考版) 第10章 §10.3 二项式定理课件PPT

    展开

    这是一份2024年高考数学一轮复习(新高考版) 第10章 §10.3 二项式定理课件PPT,共59页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,二项式定理,k+1,-28,所以a=1,120x4等内容,欢迎下载使用。
    能用多项式运算法则和计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题.
    2.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数 .(2)增减性与最大值:当n是偶数时,中间的一项______取得最大值;当n是奇数时,中间的两项_______与_______相等,且同时取得最大值.
    判断下列结论是否正确(请在括号中打“√”或“×”)(1) 是(a+b)n的展开式中的第k项.(  )(2)(a+b)n的展开式中每一项的二项式系数与a,b无关.(  )(3)通项公式 中的a和b不能互换.(  )(4)二项式的展开式中的系数最大项与二项式系数最大项是相同的.(  )
    因为展开式的通项为Tk+1= ,
    A.45 B.20 C.-30 D.-90
    令-10+ =2,得k=8,所以展开式中x2的系数为(-1)8×C=45.
    A.31 B.32 C.15 D.16
    即3n=35,所以n=5,
    因为二项式系数之和为2n=64,
    3.若 的展开式中二项式系数之和为64,则展开式的常数项为____.
    命题点1 形如(a+b)n(n∈N*)的展开式的特定项例1 (1)二项式 的展开式中的常数项是A.-45 B.-10 C.45 D.65
    (2)已知 的展开式中x5的系数为A,x2的系数为B,若A+B=11,则a=______.
    则由1+10a2=11,解得a=±1.
    命题点2 形如(a+b)m(c+d)n (m,n∈N*)的展开式问题例2 (1)(1+x)8(1+y)4的展开式中x2y2的系数是A.56 B.84 C.112 D.168
    (2)在(2x+a) 的展开式中,x2的系数为-120,则该二项展开式中的常数项为A.3 204   B.-160   C.160   D.-320
    ∵7-2k≠0,在-2Tk+1 中,令6-2k=0,解得k=3,
    (1)求二项展开式中的特定项,一般是化简通项后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k+1,代回通项即可.(2)对于几个多项式积的展开式中的特定项问题,一般可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏.
    跟踪训练1 (1)(2022·新高考全国Ⅰ) 的展开式中x2y6的系数为_____(用数字作答).
    (2)在二项式 的展开式中,常数项是_______;系数为有理数的项的个数是______.
    若展开式的系数为有理数,则k=1,3,5,7,9,有T2,T4,T6,T8,T10,共5个.
    命题点1 二项式系数和与系数和例3 (1)在 的展开式中,各项系数和与二项式系数和之和为128,则A.二项式系数和为32B.各项系数和为128C.常数项为-135D.常数项为135
    二项式系数与项的系数问题
    令x=1,得各项系数和为2n,又二项式系数和为2n,则2×2n=128,得n=6,即二项式系数和为64,各项系数和也为64,故A,B不正确;
    ②对原式两边求导得,10(1+x)9=a1+2a2x+3a3x2+…+10a10x9.令x=1,得a1+2a2+3a3+…+10a10=10×29=5 120.
    (2)若(1+x)10=a0+a1x+a2x2+…+a10x10,则a2+a6+a8=_______;a1+2a2+3a3+…+10a10=________.
    命题点2 系数与二项式系数的最值问题例4 (多选)(2023·唐山模拟)下列关于 的展开式的说法中正确的是A.常数项为-160B.第4项的系数最大C.第4项的二项式系数最大D.所有项的系数和为1
    对于A,令2k-6=0,解得k=3,
    对于B,由通项公式知,若要系数最大,k所有可能的取值为0,2,4,6,
    ∴展开式第5项的系数最大,B错误;对于C,展开式共有7项,得第4项的二项式系数最大,C正确;对于D,令x=1,则所有项的系数和为(1-2)6=1,D正确.
    赋值法的应用一般地,对于多项式(a+bx)n=a0+a1x+a2x2+…+anxn,令g(x)=(a+bx)n,则(a+bx)n的展开式中各项的系数和为g(1),(a+bx)n的展开式中奇数项的系数和为 [g(1)+g(-1)],(a+bx)n的展开式中偶数项的系数和为 [g(1)-g(-1)].
    跟踪训练2 (1)(多选)对于 的展开式,下列说法正确的是A.所有项的二项式系数和为64B.所有项的系数和为64C.常数项为1 215D.系数最大的项为第3项
    由C的分析可知第2,4,6项系数为负值,第1项系数为1,
    故(a0+a2+a4+…+a10)2 -(a1+a3+a5+…+a9)2=(a0+a1+a2+…
    (2)设 =a0+a1x+a2x2+…+a10x10,则(a0+a2+a4+…+a10)2 -(a1+a3+a5+…+a9)2的值为_____.
    因为a∈Z,且0≤a≤13,
    例5 (1)设a∈Z,且0≤a≤13,若512 023+a能被13整除,则a等于A.0 B.1 C.11 D.12
    因为512 023+a能被13整除,
    (2)利用二项式定理计算1.056,则其结果精确到0.01的近似值是
    二项式定理应用的题型及解法(1)在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)展开后的每一项都含有除式的因式.(2)二项式定理的一个重要用途是做近似计算:当n不是很大,|x|比较小时,(1+x)n≈1+nx.
    跟踪训练3 (1)设n为奇数,那么11n+1除以13的余数是A.-3 B.2 C.10 D.11
    =12n-2=(13-1)n-2
    (2)0.996的计算结果精确到0.001的近似值是
    =1-0.06+0.001 5-0.000 02+…+0.016≈0.941.
    1. 的展开式中x4的系数为A.10 B.20 C.40 D.80
    令10-3k=4,则k=2,
    令12-3k=0,得k=4.
    当6-2k=0,即k=3时,可得①式中的后一项即为所求,
    A.2 B.3 C.4 D.5
    所以当k=0,6,12,18,24时,x的指数是整数,故x的指数是整数的有5项.
    根据题意,奇数项的二项式系数之和也为128,所以在(1-2x)n的展开式中,二项式系数之和为256,即2n=256,得n=8,则(1-2x)8的展开式的中间项为第5项,
    5.在二项式(1-2x)n的展开式中,偶数项的二项式系数之和为128,则展开式的中间项的系数为A.-960 B.960 C.1 120 D.1 680
    6.设a= ,则当n=2 023时,a除以15所得余数为A.3   B.4   C.7   D.8
    ∴a=4n-1,当n=2 023时,a=42 023-1=4×161 011-1=4×[(15+1)1 011-1]+3,
    故此时a除以15所得余数为3.
    A.常数项是第3项B.各项的系数和是C.第4项二项式系数最大D.奇数项二项式系数和为32
    对于C选项,展开式共7项,故第4项二项式系数最大,C正确;对于D选项,奇数项二项式系数和为25=32,D正确.
    8.(多选)(2023·沧州模拟)已知(1-2x)2 023=a0+a1x+a2x2+…+a2 023x2 023,则A.展开式中所有项的二项式系数和为22 023B.展开式中系数最大项为第1 350项
    易知(1-2x)2 023的展开式中所有项的二项式系数和为22 023,故A正确;
    所以第1 350项不是系数最大项,故B错误;当x=1时,有a0+a1+a2+…+a2 023=-1,①当x=-1时,有a0-a1+a2-a3+…+a2 022-a2 023=32 023,②
    9.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,则a1=_____,a1+a2+…+a5=______.
    令x=3,得a0+a1+a2+…+a5=35=243;令x=2,得a0=25=32,故a1+a2+…+a5=243-32=211.
    10.(1+2x)n的展开式中第6项与第7项的系数相等,展开式中二项式系数最大的项为_________;系数最大的项为_________________.
    1 792x5和1 792x6
    解得5≤k≤6.又k∈N,∴k=5或k=6,∴系数最大的项为T6=1 792x5,T7=1 792x6.
    11.(x+y-2z)5的展开式中,xy2z2的系数是A.120 B.-120 C.60 D.30
    由题意知(x+y-2z)5=[(x+y)-2z]5,
    所以(x+y-2z)5的展开式中,
    所以a1=-4,对所给等式,两边对x求导,可得(2+x)3+3(x-1)(2+x)2=a1+2a2x+3a3x2+4a4x3,令x=1,得27=a1+2a2+3a3+4a4,所以2a2+3a3+4a4=31.
    12.(2023·浙江名校联盟联考)设(x-1)(2+x)3=a0+a1x+a2x2+a3x3+a4x4,则a1=_____,2a2+3a3+4a4=_____.
    13.若(2x+1)n=a0+a1x+a2x2+…+anxn的展开式中的各项系数和为243,则a1+2a2+…+nan等于A.405 B.810 C.243 D.64
    (2x+1)n=a0+a1x+a2x2+…+anxn,两边求导得2n(2x+1)n-1=a1+2a2x+…+nanxn-1.令x=1,则2n×3n-1=a1+2a2+…+nan.又因为(2x+1)n的展开式中各项系数和为243,令x=1,可得3n=243,解得n=5.所以a1+2a2+…+nan=2×5×34=810.
    令x=0,得b0=1,
    由an+1=Sn·Sn+1=Sn+1-Sn,

    相关课件

    新高考数学一轮复习讲练测课件第10章§10.3二项式定理 (含解析):

    这是一份新高考数学一轮复习讲练测课件第10章§10.3二项式定理 (含解析),共59页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,二项式定理,k+1,-28,所以a=1,120x4等内容,欢迎下载使用。

    高考数学一轮复习第10章第2节二项式定理课件:

    这是一份高考数学一轮复习第10章第2节二项式定理课件,共60页。PPT课件主要包含了k+1,××√等内容,欢迎下载使用。

    新高考数学一轮复习课件 第10章 §10.3 二项式定理:

    这是一份新高考数学一轮复习课件 第10章 §10.3 二项式定理,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map