四川省仁寿县2020-2021学年高二下学期期末模拟考试 数学(文)试题
展开高2019级仁寿县第四学期期末模拟试卷
文科数学 2021.06
数学试题卷(文科)共4页.满分150分.考试时间120分钟.
注意事项:
1.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.
2.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.
3.所有题目必须在答题卡上作答,在试题卷上答题无效.
4.考试结束后,将答题卡交回.
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.
1.已知i为虚数单位,复数,,若z为纯虚数,则( )
A. B. C.2 D.
2.某学校决定从该校的2000名高一学生中采用系统抽样(等距)的方法抽取50名学生进行体质分析,现将2000名学生从1至2000编号,已知样本中第一个编号为7,则抽取的第26个学生的编号为( )
A.997 B.1007 C.1047 D.1087
3.2020年初,从非洲蔓延到东南亚的蝗虫灾害严重威胁了国际农业生产,影响了人民生活.世界性与区域性温度的异常、早涝频繁发生给蝗灾发生创造了机会.已知蝗虫的产卵量与温度的关系可以用模型拟合,设,其变换后得到一组数据:
由上表可得线性回归方程,则( )
A. B. C. D.
4.甲、乙两名同学在高考前的5次模拟考中的数学成绩如茎叶图所示,记甲、 乙两人的平均成绩分别为,下列说法正确的是( )
A.,且乙比甲的成绩稳定 B.,且乙比甲的成绩稳定
C.,且甲比乙的成绩稳定 D.,且甲比乙的成绩稳定
5.2021年电影春节档票房再创新高,其中电影《唐人街探案3》和《你好,李焕英》是今年春节档电影中最火爆的两部电影,这两部电影都是2月12日(大年初一)首映,根据猫眼票房数据得到如下统计图,该图统计了从2月12日到2月18日共计7天的累计票房(单位:亿元),则下列说法中错误的是( )
A.这7天电影《你好,李焕英》每天的票房都超过2.5亿元
B.这7天两部电影的累计票房的差的绝对值先逐步扩大后逐步缩小
C.这7天电影《你好,李焕英》的当日票房占比逐渐增大
D.这7天中有4天电影《唐人街探案3》的当日票房占比超过50%
6.如图所示的程序框图,若输入x的值为2,输出v的值为16,则判断框内可以填入( )
A.k≤3? B.k≤4? C.k≥3? D.k≥4?
7.函数的零点个数为( )
A. B.或 C.或 D.或或
8.苏格兰数学家科林麦克劳林(ColinMaclaurin)研究出了著名的Maclaurin级数展开式,受到了世界上顶尖数学家的广泛认可,下面是麦克劳林建立的其中一个公式:,试根据此公式估计下面代数式的近似值为( )(可能用到数值ln2.414=0.881,ln3.414=1.23)
A.3.23 B.2.881 C.1.881 D.1.23
9.函数(其中为自然对数的底数)的图象大致是( )
A. B. C. D.
10.甲乙两人相约10天内在某地会面,约定先到的人等候另一个人,经过三天后方可离开.若他们在期限内到达目的地是等可能的,则此二人会晤的概率是( )
A.0.5 B.0.51 C.0.75 D.0.4
11.设函数是奇函数的导函数,.当时,,则使得成立的的取值范围是( )
A. B. C. D.
12.已知函数,,设为实数,若存在实数,使,则实数的取值范围为( )
A. B. C. D.
二、填空题:本大题共4小题,每小题5分,共20分. 请将答案填在答题卷中的相应位置.
13.的边,为边上一动点,则的概率为__▲___
14.复数(是虚数单位)是方程的一个根,则实数___▲___
15.已知函数的定义域为,且的图像如右图所示,记的导函数为,则不等式的解集是____▲___
16.若函数图象在点处的切线方程为,则的最小值为___▲___
三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或推演步骤.
17.(本小题10分)
(1)用反证法证明:在一个三角形中,至少有一个内角大于或等于.
(2)用分析法证明:当时,.
18.(本小题12分)某企业有A,B两个分厂生产某种产品,规定该产品的某项质量指标值不低于120的为优质品.分别从A,B两厂中各随机抽取100件产品统计其质量指标值,得到如下频率分布直方图:
(1)根据频率分布直方图,分别求出B分厂的质量指标值的中位数和平均数的估计值;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为这两个分厂的产品质量有差异?
19.(本小题12分)已知函数.
(1)求曲线在处的切线方程;
(2)求曲线过点的切线方程.
20.(本小题12分)某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据如表所示:
已知变量具有线性负相关关系,且,现有甲、乙、丙三位同学通过计算求得其回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.
(1)试判断谁的计算结果正确?并求出的值;
(2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据”.现从检测数据中随机抽取2个,求“理想数据”至少有一个的概率.
21.(本小题12分)已知函数.
(1)求函数的最值;
(2)求证:.
22.(本小题12分)已知函数为自然对数的底数).
(1)若是的极值点,求的取值;
(2)若只有一个零点,求的取值范围.
高2019级仁寿县第四学期期末模拟试卷
文科数学参考答案
一、选择题
1.C 2.B 3.B 4.A 5.D 6.A 7.A 8.B 9.C 10.B 11.C 12.B
二、填空题
13. 14. 15. 16.
三、解答题
17.解:(1)证明:假设三角形三个角都小于·············································1分
那么····························································································2分
而三角形内角和与假设矛盾·····························································3分
所以三角形至少有一个内角大于或等于·····························································4分
(2)证明:要证(),只需证·····················································5分
则需证,即··········································································7分
令,则,当时,;当时,,所以,即,则原不等式得证··················································10分
18.解:(1)B分厂的质量指标值;
由,则的中位数为······································2分
的平均数为·········6分
(2)列联表:
···············································································7分
由列联表可知的观测值为:
··································11分
所以有99%的把握认为两个分厂的产品质量有差异.················································12分
19.解:(1)由已知得,则,所以切线斜率,···························2分
因为,所以切点坐标为,·····················································4分
所以所求直线方程为,
故曲线在处的切线方程为.·······················································5分
(2)由已知得,设切点为,···················································6分
则,即,得或,
所以切点为或,切线的斜率为或,·················································10分
所以切线方程为或
即切线方程为或·······························································12分
20.解:(1)∵变量具有线性负相关关系,∴甲是错误的.······································1分
又∵∴,满足方程,故乙是正确的.··········3分
由得··································································5分
(2)由计算可得“理想数据”有个,即,则用字母代表“理想数据”,其余检测数据用代表,·················································································7分
所以从检测数中随机抽取个有,,,,,,,,,,,,,,共种,······························································································10分
满足题意的有,,,,,,,,,,,共种,·········11分
所以“理想数据”至少有一个的概率为····························································12分
21.解:(1)由题可知··································································1分
所以,当时,,单调递减;当时,,单调递增,所以··································································4分
(2)方法一:,令,
,故在上单调递增.············································5分
又,又在上连续,
使得,即,.(*)·····························7分
随的变化情况如下:
↘ | 极小值 | ↗ |
. 由(*)式得,代入上式得
. 令,
,故在上单调递减.,又,.
即.·················································································12分
方法二:,································································8分
易得,,
所以,得证······················································12分
22.解:(1),······································································1分
当时,,;,,此时恒成立,则不是函数的极值点·······················································································3分
所以···············································································4分
(2)只有一个零点,显然是,所以分为两种情况
第1种情况:满足,此时·····················································6分
第2种情况:无解,
令,;
①当时,,单调递增,故在上存在使得;·························································································8分
②当时,方程显然无解;·······························································9分
③当时,解得,当时,,单调递减;当时,,单调递增,则,即,所以·································································································11分
综上所述:················································································12分
2022-2023学年四川省仁寿县文宫中学高二下学期5月月考数学(文)试题含答案: 这是一份2022-2023学年四川省仁寿县文宫中学高二下学期5月月考数学(文)试题含答案,共17页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年四川省眉山市仁寿县文宫中学高二下学期期中数学(文)试题含答案: 这是一份2022-2023学年四川省眉山市仁寿县文宫中学高二下学期期中数学(文)试题含答案,共16页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
四川省仁寿县2020-2021学年高二下学期期末模拟考试 数学(文)试题: 这是一份四川省仁寿县2020-2021学年高二下学期期末模拟考试 数学(文)试题,共10页。试卷主要包含了06,5亿元等内容,欢迎下载使用。