


所属成套资源:中考数学压轴题
- 中考数学压轴题54 试卷 1 次下载
- 中考数学压轴题55 试卷 1 次下载
- 中考数学压轴题57 试卷 1 次下载
- 中考数学压轴题58 试卷 1 次下载
- 中考数学压轴题59 试卷 1 次下载
中考数学压轴题56
展开
这是一份中考数学压轴题56,共12页。试卷主要包含了某单位准备购买文化用品,现有甲等内容,欢迎下载使用。
2022年初中数学1、如图,点A在反比例函数的图像上,以为一边作等腰直角三角形,其中∠=90°,,则线段长的最小值是( )A. 1 B. C. D. 4【答案】C【解析】【分析】如图,过作轴,交y轴于M,过作轴,垂足为D,交MA于H,则 证明 可得 设 则 可得 再利用勾股定理建立函数关系式,结合完全平方公式的变形可得答案.【详解】解:如图,过作轴,交y轴于M,过作轴,垂足为D,交MA于H,则 设 则 而当时,则 ∴的最小值是8,∴的最小值是 故选:C.【点睛】本题考查的是等腰直角三角形的性质,全等三角形的判定与性质,反比例函数的性质,完全平方公式的变形应用,勾股定理的应用,掌握“的变形公式”是解本题的关键.2、 如图,在矩形中,=6,=8,点、分别是边、的中点,某一时刻,动点从点出发,沿方向以每秒2个单位长度的速度向点匀速运动;同时,动点从点出发,沿方向以每秒1个单位长度的速度向点匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接,过点作的垂线,垂足为.在这一运动过程中,点所经过的路径长是_____.【答案】##【解析】【分析】根据题意知EF在运动中始终与MN交于点Q,且 点H在以BQ为直径的上运动,运动路径长为的长,求出BQ及的圆角,运用弧长公式进行计算即可得到结果.【详解】解:∵点、分别是边、的中点,连接MN,则四边形ABNM是矩形,∴MN=AB=6,AM=BN=AD==4,根据题意知EF在运动中始终与MN交于点Q,如图,∵四边形ABCD是矩形,∴AD//BC,∴∴∴ 当点E与点A重合时,则NF=,∴BF=BN+NF=4+2=6,∴AB=BF=6∴是等腰直角三角形,∴ ∵BP⊥AF,∴ 由题意得,点H在以BQ为直径的上运动,运动路径长为长,取BQ中点O,连接PO,NO,∴∠PON=90°,又 ∴,∴,∴的长为=故答案为:【点睛】本题主要考查了相似三角形的判定与性质,勾股定理,圆周角定理,以及弧长等知识,判断出点H运动的路径长为长是解答本题的关键. 3、某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为 元;乙超市的购物金额为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?【答案】(1)300,240 (2)当时,选择乙超市更优惠,当时,两家超市的优惠一样,当时,选择乙超市更优惠,当时,选择甲超市更优惠.【解析】【分析】(1)根据甲、乙两家超市的优惠方案分别进行计算即可;(2)设单位购买x件这种文化用品,所花费用为y元, 可得当时, 显然此时选择乙超市更优惠,当时 再分三种情况讨论即可.【小问1详解】解: 甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;∴该单位需要购买30件这种文化用品,则在甲超市的购物金额为(元),∵乙超市全部按标价的8折售卖,∴该单位需要购买30件这种文化用品,则在甲超市的购物金额为(元),故答案:【小问2详解】设单位购买x件这种文化用品,所花费用为y元,又当10x=400时,可得 当时, 显然此时选择乙超市更优惠,当时, 当时,则 解得: ∴当时,两家超市的优惠一样,当时,则 解得: ∴当时,选择乙超市更优惠,当时,则 解得: ∴当时,选择甲超市更优惠.【点睛】本题考查的是列代数式,一次函数的实际应用,一元一次不等式的实际应用,清晰的分类讨论是解本题的关键.4、 如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点、、、、均为格点.【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段、,相交于点并给出部分说理过程,请你补充完整:解:在网格中取格点,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,在Rt△CDE中, ,所以.所以∠=∠.因为∠ ∠ =∠ =90°,所以∠ +∠ =90°,所以∠ =90°,即⊥.(1)【拓展应用】如图②是以格点为圆心,为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明:(2)【拓展应用】如图③是以格点为圆心的圆,请你只用无刻度的直尺,在弦上找出一点P.使=·,写出作法,不用证明.【答案】(1);见解析 (2)见解析【解析】【分析】(1)取BM的中点Q,作射线OQ交于点P,点P即为所求作,利用全等三角形的判定和性质证得MO=BO,再利用等腰三角形的性质即可证明;(2)取格点I,连接MI交AB于点P,点P即为所求作.利用正切函数证得∠FMI=∠MNA,利用圆周角定理证得∠B=∠MNA,再推出△PAM∽△MAB,即可证明结论.【小问1详解】解:【操作探究】在网格中取格点,构建两个直角三角形,分别是△ABC和△CDE.在Rt△ABC中,在Rt△CDE中,,所以.所以∠=∠.因为∠ ∠ =∠ =90°,所以∠ +∠ =90°,所以∠ =90°,即⊥.故答案为:;取BM的中点Q,作射线OQ交于点P,点P即为所求作;证明:在△OGM和△OHB中, OG=OH=1,∠OGM=∠OHB=90°,MG=BH=3,∴△OGM≌△OHB,∴MO=BO,∵点Q是BM的中点,∴OQ平分∠MOB,即∠POM=∠POB,∴=;【小问2详解】解:取格点I,连接MI交AB于点P,点P即为所求作;证明:作直径AN,连接BM、MN,在Rt△FMI中,,在Rt△MNA中,,所以.∴∠FMI=∠MNA,∵∠B=∠MNA,∴∠AMP=∠B,∵∠PAM=∠MAB,∴△PAM∽△MAB, ∴,∴=·.【点睛】本题考查作图-应用与设计,相似三角形的判定和性质,圆周角定理,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.5、 如图,二次函数与轴交于 (0,0), (4,0)两点,顶点为,连接、,若点是线段上一动点,连接,将沿折叠后,点落在点的位置,线段与轴交于点,且点与、点不重合.(1)求二次函数的表达式;(2)①求证:;②求;(3)当时,求直线与二次函数的交点横坐标.【答案】(1) (2)①证明见解析,② (3)或.【解析】【分析】(1)二次函数与轴交于 (0,0),A(4,0)两点,代入求得b,c的值,即可得到二次函数的表达式;(2)①由=,得到顶点C的坐标是(2,﹣2),抛物线和对称轴为直线x=2,由抛物线的对称性可知OC=AC,得到∠CAB=∠COD,由折叠的性质得到△ABC≌△BC,得∠CAB=∠,AB=B,进一步得到∠COD=∠,由对顶角相等得∠ODC=∠BD,证得结论;②由,得到,设点D的坐标为(d,0),由两点间距离公式得DC=,在0<d<4的范围内,当d=2时,DC有最小值为,得到的最小值,进一步得到的最小值;(3)由和得到 ,求得B=AB=1,进一步得到点B的坐标是(3,0),设直线BC的解析式为y=x+,把点B(3,0),C(2,﹣2)代人求出直线BC的解析式为y=2x-6,设点的坐标是(p,q),则线段A的中点为(,),由折叠的性质知点(,)在直线BC上,求得q=2p-4,由两点间距离公式得B=,解得p=2或p=,求得点的坐标,设直线的解析式为y=x+,由待定系数法求得直线的解析式为y=x+4,联立直线和抛物线,解方程组即可得到答案.【小问1详解】解:∵二次函数与轴交于 (0,0), (4,0)两点,∴代入 (0,0), (4,0)得,,解得:,∴二次函数的表达式为;【小问2详解】①证明:∵ =,∴顶点C的坐标是(2,﹣2),抛物线的对称轴为直线x=2,∵二次函数与轴交于(0,0),(4,0)两点,∴由抛物线的对称性可知OC=AC,∴∠CAB=∠COD,∵沿折叠后,点落在点的位置,线段与轴交于点,∴ △ABC≌△BC,∴∠CAB=∠,AB=B,∴∠COD=∠,∵∠ODC=∠BD,∴;②∵,∴,设点D的坐标为(d,0),由两点间距离公式得DC=,∵点与、点不重合,∴0<d<4,对于 =来说,∵ a=1>0,∴抛物线开口向上,在顶点处取最小值,当d=2时,的最小值是4,∴当d=2时,DC有最小值为,由两点间距离公式得OC=,∴有最小值为,∴的最小值为;【小问3详解】解:∵,∴,∵,∴ ,∵OC=2,∴B=AB=1,∴点B的坐标是(3,0),设直线BC的解析式为y=x+,把点B(3,0),C(2,﹣2)代人得,解得,∴直线BC的解析式为y=2x-6,设点的坐标是(p,q),∴线段A的中点为(,),由折叠的性质知点(,)在直线BC上,∴=2×-6,解得q=2p-4,由两点间距离公式得B=,整理得=1,解得p=2或p=,当p=2时,q=2p-4=0,此时点(2,0),很显然不符合题意,当p=时,q=2p-4=,此时点(,),符合题意,设直线的解析式为y=x+,把点B(3,0),(,)代人得,,解得,∴直线的解析式为y=x+4,联立直线和抛物线得到,,解得,,∴直线与二次函数的交点横坐标为或.【点睛】此题是二次函数综合题,主要考查了待定系数求函数的表达式、两点间距离公式、相似三角形的判定和性质、中点坐标公式、一次函数的图象和性质、二次函数的图象和性质、图形的折叠等知识,难度较大,属于中考压轴题,数形结合是解决此问题的关键.
