所属成套资源:2022-2023学年八年级数学下学期期末考点大串讲(人教版)
专题07数据的分析 -2022-2023学年八年级数学下学期期末考点大串讲(人教版)
展开
这是一份专题07数据的分析 -2022-2023学年八年级数学下学期期末考点大串讲(人教版),文件包含专题07数据的分析知识串讲+热考题型解析版docx、专题07数据的分析知识串讲+热考题型原卷版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
专题07数据的分析 (知识串讲+热考题型)
一.调查收集数据的过程与方法(共4小题) 二.算术平均数(共4小题)
三.加权平均数(共3小题) 四.中位数(共5小题)
五.众数(共3小题) 六.极差(共4小题)
七.方差(共12小题) 八.统计量的选择(共5小题)
一.调查收集数据的过程与方法
(1)在统计调查中,我们利用调查问卷收集数据,利用表格整理数据,利用统计图描述数据,通过分析表和图来了解情况.
(2)统计图通常有条形统计图,扇形统计图,折线统计图.
(3)设计调查问卷分以下三步:①确定调查目的;②选择调查对象;③设计调查问题.
(4)统计调查的一般过程:
①问卷调查法﹣﹣﹣﹣﹣收集数据;
②列统计表﹣﹣﹣﹣﹣整理数据;
③画统计图﹣﹣﹣﹣﹣描述数据.
二.算术平均数
(1)平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.
(2)算术平均数:对于n个数x1,x2,…,xn,则=(x1+x2+…+xn)就叫做这n个数的算术平均数.
(3)算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.
三.加权平均数
(1)加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则x1w1+x2w2+…+xnwnw1+w2+…+wn叫做这n个数的加权平均数.
(2)权的表现形式,一种是比的形式,如4:3:2,另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%,权的大小直接影响结果.
(3)数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.
(4)对于一组不同权重的数据,加权平均数更能反映数据的真实信息.
四.中位数
(1)中位数:
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.
如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
(2)中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息.
(3)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.
五.众数
(1)一组数据中出现次数最多的数据叫做众数.
(2)求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.
(3)众数不易受数据中极端值的影响.众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量..
六.极差
(1)极差是指一组数据中最大数据与最小数据的差.
极差=最大值﹣最小值.
(2)极差是刻画数据离散程度的一个统计量.它只能反映数据的波动范围,不能衡量每个数据的变化情况.
(3)极差的优势在于计算简单,但它受极端值的影响较大.
七.方差
(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.
(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示,计算公式是:
s2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2](可简单记忆为“方差等于差方的平均数”)
(3)方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
八.统计量的选择
(1)一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.但这并不是绝对的,有时多数数据相对集中,整体波动水平较小,但个别数据的偏离仍可能极大地影响极差、方差或标准差的值.从而导致这些量度数值较大,因此在实际应用中应根据具体问题情景进行具体分析,选用适当的量度刻画数据的波动情况,一般来说,只有在两组数据的平均数相等或比较接近时,才用极差、方差或标准差来比较两组数据的波动大小.
(2)平均数、众数、中位数和极差、方差在描述数据时的区别:①数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数,描述了数据的离散程度.②极差和方差的不同点:极差表示一组数据波动范围的大小,一组数据极差越大,则它的波动范围越大;方差和标准差反映了一组数据与其平均值的离散程度的大小.方差(或标准差)越大,数据的历算程度越大,稳定性越小;反之,则离散程度越小,稳定性越好.
一.调查收集数据的过程与方法(共4小题)
1.(2022春•东城区期末)为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:
方案一:在多家旅游公司随机调查400名导游;
方案二:在恭王府景区随机调查400名游客;
方案三:在北京动物园景区随机调查400名游客;
方案四:在上述四个景区各随机调查400名游客.
在这四种调查方案中,最合理的是( )
A.方案一 B.方案二 C.方案三 D.方案四
2.(2022春•永年区月考)某校八年级共有5个班级,每个班的人数在50人左右.为了了解该校八年级学生最喜欢的体育项目,八年级(二)班的四位同学各自设计了如下的调查方案:
甲:我准备给八年级每班的学习委员都发一份问卷,由学习委员代表班级填写完成.
乙:我准备给八年级所有女生都发一份问卷,填写完成.
丙:我准备在八年级每个班随机抽取10名同学各发一份问卷,填写完成.
丁:我准备在八年级随机抽取一个班,给这个班所有的学生每人发一份问卷,填写完成.则四位同学的调查方案中,能更好地获得该校学生最喜欢的体育项目的是( )
A.甲 B.乙 C.丙 D.丁
3.(2023春•襄都区月考)某商场为了解用户最喜欢的家用电器,设计了如下尚不完整的调查问卷:
该商场准备在“①制冷电器,②微波炉,③冰箱,④电饭锅,⑥空调,⑥厨房电器”中选取四个作为问卷问题的备选项目,你认为最合理的是( )
A.①②③④ B.①③⑤⑥ C.③④⑤⑥ D.②③④⑤
4.(2022春•广平县校级月考)已知某校共有七,八,九三个年级,每个年级有4个班,每个班的人数在20~30之间,为了解该校学生家庭的教育消费情况,现设计了如下的调查方案.
方案一:给全校每个班都发一份问卷,由班长填写完成;
方案二:把问卷发送到随机抽取的七年级某个班的家长微信群里,通过网络提交完成:
方案三:给每个班学号分别为1,5,10,15,20的同学各发一份问卷,填写完成.以上哪种调查方案能较好的获得该校学生家庭的教育消费情况,并说明其他两个调查方案的不足之处.
二.算术平均数(共4小题)
5.(2023春•临平区期中)已知一组数据,前8个数据的平均数是x,还有两个数据的分别为84,84,则这组数据的平均数是( )
A. B. C. D.
6.(2023•潮南区模拟)一组数据﹣2,1,3,x的平均数是2,则x是( )
A.1 B.3 C.6 D.7
7.(2023春•温州期中)已知数据x1,x2的平均数是2,数据x3,x4,x5的平均数是4,则x1,x2,x3,x4,x5这组数据的平均数是 .
8.(2023春•下城区校级期中)一组数据为:1、2、3、4、5、6、7,则这组数据的平均数是 .
三.加权平均数(共3小题)
9.(2023春•萧山区期中)双减政策落地,各地学校大力提升学生核心素养,学生的综合评价分学习、体育和艺术三部分,学习成绩、体育成绩与艺术成绩按5:3:2计入综合评价,若宸宸学习成绩为90分,体育成绩为80分,艺术成绩为85分,则他的综合评价得分为( )
A.84 B.85 C.86 D.87
10.(2023•平谷区一模)为了提高大家的环境保护意识,某小区在假期开展了废旧电池回收的志愿者活动,该社区的10名中学生参与了该项活动,回收的旧电池数量如表:
电池数量(节)
2
5
6
8
10
人数
1
4
2
2
1
根据以上数据,这10名中学生收集废旧电池的平均数为 .
11.(2023•东城区校级模拟)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如表所示:
时间(小时)
5
6
7
8
人数
10
15
20
5
则这50名学生这一周在校的平均体育锻炼时间是 .若该中学共有2000名学生,请你估计这所中学一周在校的体育锻炼时间达到8小时的同学有 名.
四.中位数(共5小题)
12.(2023•天府新区模拟)2023年春节前夕,天府新区师生以“绘天府•迎新春”为主题,创作上万件艺术作品,在约8.8公里的兴隆湖环湖跑道上进行展览,某校九年级5个班提供的艺术作品数(单位:件)分别为:13,21,27,27,23,则这组数据的中位数是( )
A.23 B.21 C.26 D.27
13.(2023•东莞市校级一模)数据2、3、3、5、4的中位数是( )
A.2 B.3 C.3.5 D.4
14.(2023•黑龙江一模)一组数据按从小到大排列为2,4,6,x,14,15,若这组数据的中位数为9,则x是( )
A.7 B.9 C.12 D.13
15.(2022秋•泰山区校级期末)某班七个兴趣小组人数分别为:3,3,4,x,5,5,6,已知这组数据的平均数是4,则这组数据的中位数是 .
16.(2023•武汉模拟)在“4•23世界读书日”来临之际,某学校开展“让阅读成为习惯”的读书活动,为了解学生的参与程度,从全校随机抽取a名学生进行问卷调查,获取了每人平均每天阅读时间t(单位:分钟),将收集的数据分为A,B,C,D,E五个等级,绘制成如下不完整放计图表.
平均每天阅读时间统计表
等级
人数
A(t<20)
5
B(20≤t<30)
10
C(30≤t<40)
b
D(40≤t<50)
80
E(t≥50)
c
请根据图表中的信息,解答下列问题:
(1)直接写出a,b的值;
(2)这组数据的中位数所在的等级是 ;
(3)学校拟将平均每天阅读时间不低于50分钟的学生评为“阅读达人”,若该校学生以2000人计算,估计可评为“阅读达人”的学生人数.
五.众数(共3小题)
17.(2023•锦江区模拟)某小组7名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是( )
劳动时间(小时)
3
4
5
6
人数
3
2
1
1
A.中位数是4,平均数是3 B.众数是3,平均数是3
C.中位数是4,平均数是4 D.众数是6,平均数是4
18.(2023•昌江县校级模拟)某校举行“预防溺水,从我做起”演讲比赛,7位评委给选手甲的评分如下:85,88,90,92,93,93,95则这组数据的众数和中位数分别是( )
A.93,92 B.93,93 C.95,92 D.95,93
19.(2023•碑林区校级模拟)共享单车是高校学生喜爱的“绿色出行”方式之一,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.
使用次数
0
1
2
3
4
5
人数
11
15
24
27
18
5
(1)这天部分出行学生使用共享单车次数的中位数是 ,众数是 ;
(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)
(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上的学生有多少人?
六.极差(共4小题)
20.(2023•龙泉驿区模拟)在一次体育考试中,六名男生引体向上的成绩如表,对于这组数据,下列说法不正确的是( )
成绩(个次)
10
11
13
17
23
人数
2
1
1
1
1
A.极差是13 B.众数是10 C.中位数是15 D.平均数是14
21.(2023•紫金县校级开学)已知一组数据:4,﹣1,5,9,7,则这组数据的极差是( )
A.10 B.8 C.5 D.2
22.(2023•东明县一模)疫情无情人有情,爱心捐款传真情.新冠肺炎疫情发生后,某班学生积极参加献爱心活动,该班40名学生的捐款统计情况如表,关于捐款金额,下列说法错误的是( )
金额/元
10
20
30
50
100
人数
2
18
10
8
2
A.平均数为32元 B.众数为20元
C.中位数为20元 D.极差为90元
23.(2022春•通海县期末)在某校举行的“我的中国梦”演讲比赛中,10名参赛学生的成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中不正确的是( )
A.中位数是80 B.众数是80 C.平均数是82 D.极差是40
七.方差(共12小题)
24.(2023春•九龙坡区校级期中)初二年级的甲、乙、丙、丁四位同学进行跳绳练习,每人的10次跳绳练习的平均成绩均是186个/分钟,但四人的成绩方差分别是S甲2=0.25,S乙2=0.32,S丙2=0.5,S丁2=0.15,成绩最稳定的同学是( )
A.甲 B.乙 C.丙 D.丁
25.(2023春•温州期中)已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.06,乙同学1分钟跳绳的方差到S乙2=0.35,则( )
A.甲的成绩比乙的成绩更稳定
B.乙的成绩比甲的成绩更稳定
C.甲、乙两人的成绩一样稳定
D.甲、乙两人的成绩稳定性不能比较
26.(2023春•滨江区校级期中)若样本x1+1,x2+1,…,xn+1的平均数是5,方差是2,则样本2x1+2,2x2+2,…,2xn+2的平均数、方差分别是( )
A.5,2 B.10,2 C.10,4 D.10,8
27.(2023春•西湖区校级期中)杭州市之江实验中学七年级学生的平均年龄为13岁,年龄的方差为3,若学生人数没有变动,则两年后的同一批学生,对其年龄的说法正确的是( )
A.平均年龄为13岁,方差改变
B.平均年龄为15岁,方差改变
C.平均年龄为15岁,方差不变
D.平均年龄为13岁,方差不变
28.(2023春•瑞安市校级期中)下表记录了四名运动员几次选拔赛的成绩,现要选一名成绩好且发挥稳定的运动员参加市运动会100米短跑项目,应选择( )
甲
乙
丙
丁
平均数(秒)
12.2
12.1
12.2
12.1
方差
6.3
5.2
5.8
6.1
A.甲 B.乙 C.丙 D.丁
29.(2023春•余姚市校级期中)为了提高体育中考成绩,体育老师组织同学们进行了跳绳项目的训练.小明和小聪最近8次一分钟跳绳的成绩如下:
第1次
第2次
第3次
第4次
第5次
第6次
第7次
第8次
小明
200
180
195
196
182
174
190
195
小聪
190
189
190
192
192
187
192
180
(1)分别求出小明、小聪跳绳的中位数、众数.
(2)通过计算说明,哪位同学的跳绳成绩比较稳定?
30.(2023春•渝北区校级期中)2022年3月28日是第27个全国中小学生安全教育日,为提高学生安全防范意识和自我防护能力,某校八、九年级进行了校园安全知识竞赛,并从八、九年级各随机抽取了20名学生的竞赛成绩,进行了整理和分析(竞赛成绩用x表示,总分100分,80分及以上为优秀,共分为四个等级:A:90≤x≤100,B:80≤x<90,C:70≤x<80,D:0≤x<70),部分信息如下:
八年级20名学生的竞赛成绩为:30,40,50,55,60,60,65,70,70,70,70,72,75,78,85,87,90,93,100,100.
九年级20名学生的竞赛成绩中B等级包含的所有数据为:
80,80,80,80,82.
根据以上信息,解答下列问题:
八、九年级抽取学生竞赛成绩统计表
年级
平均数
众数
中位数
优秀率
八年
71
a
70
30%
九年级
71
80
b
c%
(1)请填空:a= ,b= ,c= ;
(2)根据上述数据,你认为该校八、九年级的校园安全知识竞赛哪个年级的学生成绩更好?请说明理由(写出一条理由即可);
(3)若该校八、九年级参加本次竞赛活动的共有1200人,请估计该校八、九两个年级共有多少人成绩为优秀.
31.(2023春•九龙坡区校级期中)四月,正是春暖花开、草长莺飞的时节.“时光花店”里各类鲜花的销量都逐步增长,其中大家最喜欢购买的品种是香槟玫瑰和铃兰这两种鲜花.店主对最近10天香槟玫瑰和铃兰这两种鲜花的销售额进行统计,记录下两种鲜花的销售额(单位:元),并作了整理、描述和分析(每天的销售额用x表示,共分为三个等级,其中A:400≤x<500,B:300≤x<400,C:200≤x<300),下面给出了部分信息:
10天里香槟玫瑰的销售额:500,430,370,290,300,360,260,280,360,450.
10天里铃兰的销售额中“B”等级包含的所有数据为:360,370,370,370.
10天里香槟政瑰和铃兰销售额的统计表
品种
平均数
中位数
众数
方差
香槟政瑰
360
360
a
5760
铃兰
365
b
370
4160
根据以上信息,解答下列问题:
(1)填空:a= ,b= ;
(2)若四月除去休息日,共开店25天,估计“时光花店”本月的铃兰销售额达到“A”等级的天数;
(3)根据以上数据,你认为四月里香摈玫瑰和铃兰两种鲜花的销售情况哪种更好?请说明理由(写出一条理由即可).
32.(2023春•滨江区校级期中)某区举办中学生科普知识竞赛,各学校分别派出一支代表队参赛.知识竞赛满分为100分,规定85分及以上为“合格”,95分及以上为“优秀”.现将A,B两个代表队的竞赛成绩分布图及统计表展示如下:
组别
平均分
中位数
方差
合格率
优秀率
A队
88
90
61
70%
30%
B队
a
b
71
75%
25%
(1)成绩统计表中,a= ,b= .
(2)小明的成绩虽然在本队排名属中游,但是竞赛成绩低于本队的平均分,那么小明应属于哪个队?
(3)哪一个队成绩比较稳定,请选择一个恰当的统计角度进行分析.
33.(2023春•镇海区校级期中)为积极准备初三体育中考,某学校从报考“引体向上”项目的男生中选取了若干同学,随机分成甲、乙两个小组,每组人数相同,进行“引体向上”体能测试,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分).
甲组成绩统计表
成绩/分
7
8
9
10
人数/人
1
9
5
5
(1)m= ;甲组成绩的中位数 乙组成绩的中位数(填“>”“<”或“=”);
(2)求甲组的平均成绩;
(3)计算出甲组成绩的方差为0.81,乙组成绩的方差为0.75,则成绩更加稳定的是 组(填“甲”或“乙”).
34.(2023春•东阳市期中)某校准备从甲、乙两名同学中选派一名参加全市组织的“学宪法,讲宪法”比赛,分别对两名同学进行了八次模拟测试,每次测试满分为100分.现将测试结果绘制成如下统计图表,请根据统计图表中的信息解答下列问题:
(1)表中a= ;b= .
(2)求出乙得分的方差.
(3)根据已有的信息,你认为应选谁参赛较好,请说明理由.
平均(分)
中位数(分)
众数(分)
方差(分2)
甲
75
a
b
93.75
乙
75
75
80,75,70
S乙2
35.(2023春•上城区期中)某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.
(1)根据图示填写下表:
平均数/分
中位数/分
众数/分
A校
85
B校
85
100
(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;
(3)若A校的方差为70分2,计算B校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.
八.统计量的选择(共5小题)
36.(2023•江北区一模)某鞋店对某款女鞋一周的销售情况进行统计,结果如下:
尺码
35
36
37
38
39
40
销售量(双)
6
18
33
12
2
1
根据上表信息,该店主决定下周多进一些37码的鞋子,影响店主进货决策的统计量是( )
A.众数 B.中位数 C.平均数 D.方差
37.(2023•双流区模拟)某同学对七个数据42,35,46,3■,46,37,52进行统计分析,发现第四个两位数的个位数字被墨水涂污看不到了,则下列统计量中不受影响的是( )
A.平均数 B.中位数 C.众数 D.方差
38.(2023春•慈溪市校级期中)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示:
鞋的尺码/cm
22
22.5
23
23.5
24
24.5
25
销售量双
1
2
5
11
7
3
1
若每双鞋的销售利润相同,则该店主最应关注的销售数据是下列统计量中的( )
A.众数 B.方差 C.平均数 D.中位数
39.(2023春•瑞安市校级期中)某快递公司有20名快递员,调查得到每个快递员的日均运送单数如表:
日均运送单数(单)
49
50
51
54
56
58
60
62
人数
1
2
1
6
5
1
3
1
(1)求这20名快递员日均运送单数的平均数,众数和中位数;
(2)若要使80%的快递员都能完成任务,应选什么统计量(平均数,中位数,众数)作为日均运送单数的定额?
40.(2023春•温州期中)某工艺品厂草编车间共有16名工人,调查每个工人的日均生产能力,获得数据如下表:
日均生产能力(件)
10
11
12
13
14
16
人数
1
2
6
4
2
1
(1)这16名工人日均生产件数的平均数= 件,众数= 件,中位数= 件;
(2)为了提高工作效率和工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施,如果你是管理者,应选择什么统计量作为日生产件数的定额?
相关试卷
这是一份人教版八年级数学下学期大串讲专题07数据的分析(知识串讲+热考题型)(原卷版+解析),共42页。
这是一份考点串讲03 轴对称【6大考点串讲+14种题型+方法专题+技巧专题+探究专题】-八年级上学期数学期末考点大串讲(人教版)课件PPT,共50页。PPT课件主要包含了轴对称,等腰三角形,轴对称图形,垂直平分线,等边三角形,轴对称的性质,轴对称作图,性质和判定,思维导图,知识串讲等内容,欢迎下载使用。
这是一份专题05 数据的分析(考点串讲)2023-2024学年八年级数学下期末考点大串讲(人教版)课件PPT,共47页。PPT课件主要包含了易错易混,题型剖析,考点透视,押题预测,知识梳理,考点分类训练,重难点题型典例剖析,强化训练,针对训练等内容,欢迎下载使用。