![人教版1.1.2空间向量数量积的运算学案(含答案)第1页](http://img-preview.51jiaoxi.com/3/3/14446512/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版1.1.2空间向量数量积的运算学案(含答案)第2页](http://img-preview.51jiaoxi.com/3/3/14446512/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中数学人教A版 (2019)选择性必修 第一册第一章 空间向量与立体几何1.1 空间向量及其运算导学案
展开
这是一份高中数学人教A版 (2019)选择性必修 第一册第一章 空间向量与立体几何1.1 空间向量及其运算导学案,共5页。学案主要包含了课前准备,课后作业等内容,欢迎下载使用。
1.1.2空间向量的数量积运算(学案)学习目标 1了解空间向量夹角的概念及表示方法.2.掌握两个向量的数量积的概念、性质与运算律.(重点)3.可以用数量积证明垂直,求解长度与角度。学习过程 一 课前准备(预习教材P6~ P8,找出疑惑之处)复习(一):什么是平面向量与的数量积? 复习(二):在边长为1的正三角形⊿ABC中,求. 二、新课导学学习任务(一):空间向量的数量积定义和性质 问题:空间向量的夹角与数量积能否像平面向量来定义呢? 新知:1两个向量的夹角的定义:已知两非零向量,在空间 一点,作,则叫做向量与的夹角,记作 . 试试:⑴ 范围: ⑵ =0时, ;=π时, ⑶ 成立吗? ⑷ ,则称与互相垂直,记作 .2 向量的数量积:已知向量,则 叫做的数量积,记作,即 .规定:零向量与任意向量的数量积为零. 反思:⑴ 两个向量的数量积是数量还是向量? ⑵ (选0还是) ⑵ 你能说出的几何意义吗? 3 空间向量数量积的性质: (1)设单位向量,则.(2) . (3) = (4) 4 空间向量数量积运算律:(1).(2)(交换律).(3)(分配律反思:⑴ 吗?举例说明. ⑵ 若,则吗?举例说明. ⑶ 若,则=0或吗?为什么? 学习任务(二) 空间向量的投影1.如图(1),在空间,向量a向向量b投影,由于它们是自由向量,因此可以先将它们平移到同一个平面α内,进而利用平面上向量的投影,得到与向量b共线的向量c,c=|a|cos〈a,b〉,向量c称为向量a在向量b上的投影向量.类似地,可以将向量a向直线l投影(如图(2)).2.如图(3),向量a向平面β投影,就是分别由向量a的起点A和终点B作平面β的垂线,垂足分别为A′,B′,得到,向量称为向量a在平面β上的投影向量.这时,向量a,的夹角就是向量a所在直线与平面β所成的角.例2 已知,向量为单位向量,,则向量在向量方向上的投影向量为( ) 跟踪训练2 已知向量,若在方向上的投影向量为,则的值为( )A.2 B.1 C.-3 D. -2 学习任务(三)数量积的应用 跟踪训练3 如图,三棱锥ABCD中,AB=AC=AD=2,∠BAD=90°,∠BAC=60°,则·等于( )A.-2 B.2 C.-2 D.2 例4:用向量方法证明:已知:是平面内的两条相交直线,直线与平面的交点为,且.求证:. 跟踪训练4 用向量方法证明:在平面上的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直. 三、总结提升学习小结1..向量的数量积的定义和几何意义.2. 向量的数量积的性质和运算律的运用. 四 课后作业1. 下列命题中:①若,则,中至少一个为②若且,则③④正确有个数为( )A. 0个 B. 1个 C. 2个 D. 3个 2. 已知和是两个单位向量,夹角为,则下面向量中与垂直的是( )A. B. C. D. 3.已知中,所对的边为,且,,则= 4. 已知,,且和不共线,当 与的夹角是锐角时,的取值范围是 . 5. 已知向量满足,,,则____ 6设向量、满足,且,若为在方向上的投影向量,并满足,则( )A.3 B.4 C. D. 7 在正三棱柱ABC-ABC中,若AB=BB,则AB与CB所成的角为( )A. 60° B. 90° C. 105° D. 75° 8 如图, 在平行六面体 中, . 求:
(1)
(2) 的长;
(3) 的长. 9. 如图, 线段 在平面 内, , 且 . 求 两点间的距离.
(第9题) 1.1.2空间向量的数量积运算(答案)一 课前答案复习1 我们把称为的数量积。记作。 学习任务1:新知:1)任取 试试:(1) (2)同向 反向(3)成立 (4) 2),。反思 1)数量 2)0 3) 3)0 4) 反思 (1)不一定相等 (2)不一定相等 (3)不对 学习任务2 例2 C 跟踪训练2 B学习任务3 例3 见书上 跟踪训练3A 例4 见书上 跟踪训练4 略 四 课后作业 1)B 2)C 3) 4) 5) 6)C7)B 8) 10 9)
相关学案
这是一份【同步导学案】高中数学人教A版(2019)选修第一册-- 1.1.2空间向量的数量积运算 导学案(有答案),共9页。学案主要包含了课前预习,预习检测,新知探究,典例剖析,达标检测,本课小结等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)选择性必修 第一册1.1 空间向量及其运算优秀导学案及答案,共11页。学案主要包含了学习目标,自主学习,小试牛刀,经典例题,跟踪训练,当堂达标,参考答案等内容,欢迎下载使用。
这是一份【暑假提升】(人教A版2019)数学高一(升高二)暑假-1.1.2《空间向量的数量积运算》讲学案(必修1),文件包含112空间向量的数量积运算解析版docx、112空间向量的数量积运算原卷版docx等2份学案配套教学资源,其中学案共59页, 欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)