2022-2023学年人教版七年级下册数学期末复习试卷(含答案)
展开2022-2023学年人教新版七年级下册数学期末复习试卷
一.选择题(共10小题,满分30分,每小题3分)
1.16的平方根为( )
A.2 B.±2 C.4 D.±4
2.在平面直角坐标系中,下列点中位于第二象限的是( )
A.(0,3) B.(﹣2,1) C.(1,﹣2) D.(﹣1,﹣1)
3.已知a为整数,且<a<2,则a的值为( )
A.2 B.3 C.4 D.5
4.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( )
A.两直线平行,同位角相等
B.内错角相等,两直线平行
C.同旁内角互补,两直线平行
D.同位角相等,两直线平行
5.下列调查中,最适合采用全面调查方式的是( )
A.调查太原市市民平均每日废弃口罩的数量
B.调查某一批次LED灯泡的使用寿命
C.调查“嫦娥五号”月球探测器零部件的合格情况
D.调查太原市市民进行垃圾分类的情况
6.方程组的解是( )
A. B. C. D.
7.不等式﹣2x+5≥1的解集在数轴上表示正确的是( )
A. B.
C. D.
8.如图,在下列条件中,能判断AB∥CD的是( )
A.∠1=∠2 B.∠BAD=∠BCD
C.∠BAD+∠ADC=180° D.∠3=∠4
9.如图1是2021年3月份的月历,小军同学用“Z”字形框在月历上框出四个数字,将该“Z”字形框上下左右移动,且一定要框住月历中的四个日期,若四个日期如图2所示,则下列关于m,n的关系正确的是( )
A.2m﹣n=4 B.m=n C.2m=n﹣4 D.4m=n
10.已知点A(0,﹣6),点B(0,3),则A,B两点间的距离是( )
A.﹣9 B.9 C.﹣3 D.3
二.填空题(共6小题,满分18分,每小题3分)
11.若=4,则x= .
12.若有意义,则x的取值范围是 .
13.的相反数是 .
14.一次数学测验以后,张老师根据某班成绩绘制了如图所示的扇形统计图(成绩均为整数),若80分以上为优秀,则本次测验这个班的优秀率为 .
15.已知a,b满足|a+4|+=0,则a+b= .
16.如图,将周长为14的△ABC向右平移1个单位后得到△DEF,则四边形ABFD的周长= .
三.解答题(共7小题,满分52分)
17.(6分)解方程组
(1)
(2)
18.(6分)解不等式组:.
19.(8分)已知在平面直角坐标系中,△ABC三个顶点的坐标分别为:A(﹣3,﹣1),B(﹣2,﹣4),C(1,﹣3).
(1)作出△ABC;
(2)若将△ABC向上平移3个单位后再向右平移2个单位得到△A1B1C1,请作出△A1B1C1.
20.(8分)如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.
21.(8分)某景点的门票价格如表:
购票人数(人) | 1至50 | 51至100 | 100以上 |
门票的价格(元/人) | 12 | 10 | 8 |
学校八年级(1)(2)两个班共102人去该旅游景点游览.其中(1)班人数较少,不到50人.如果两个班都以班级为单位分别购票,则一共应付1118元;如果两个班联合起来作为一个团体购票,则可以省不少钱.
(1)请分别求出两个班各有多少名学生?
(2)两个班联合起来购票能省多少钱?
22.(8分)2010年,世博会在我国的上海举行,在网上随机调取了5月份中的某10天持票入园参观的人数,绘成下面的统计图.根据图中的信息回答下列问题:
(1)求出这10天持票入园人数的平均数、中位数和众数;
(2)不考虑其它因素的影响,以这10天的数据作为样本,估计在世博会开馆的184天中,持票入园人数超过30万人的有多少天?
23.(8分)如图,将一矩形纸片OABC放在平面直角坐标系内.O(0,0),A(6,0),C(0,3),
(1)动点Q从O出发以每秒1个单位长度的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相同速度沿AO向终点O运动,当其中一个点到达终点时另一点也停止运动.设P点运动时间为t秒,
①求点B的坐标,并用t表示OP和OQ;
②当t=1时,将△OPQ沿PQ翻折,O恰好落在CB边上的D点处,求D点坐标;
(2)动点Q从O出发以每秒1个单位长度的速度沿OC向终点C运动,同时点P从点A出发以相同速度沿AO向终点O运动,是否存在这样的点P使BP⊥PQ,若存在,请求出PQ的长度,若不存在,请说明理由.
参考答案与试题解析
一.选择题(共10小题,满分30分,每小题3分)
1.解:∵(±4)2=16,
∴16的平方根是±4.
故选:D.
2.解:∵点在第二象限,
∴点的横坐标是负数,纵坐标是正数,
∴只有B符合要求.
故选:B.
3.解:∵2<<3,3<<4,又a为整数,且<a<2,
∴a=3,
故选:B.
4.解:如图:
画∠1=∠2,根据同位角相等,两直线平行可得到过直线外一点与已知直线平行的直线.
故选:D.
5.解:A、调查太原市市民平均每日废弃口罩的数量,适合采用抽样调查,故本选项不合题意;
B、调查某一批次LED灯泡的使用寿命,适合采用抽样调查,故本选项不合题意;
C、调查“嫦娥五号”月球探测器零部件的合格情况,适合采用全面调查方式,故本选项符合题意;
D、调查太原市市民进行垃圾分类的情况,适合采用抽样调查,故本选项不合题意.
故选:C.
6.解:,
①+②得:2x=4,
解得:x=2,
把x=2代入①得:y=3,
则方程组的解为,
故选:B.
7.解:不等式﹣2x+5≥1,
移项得:﹣2x≥﹣4,
解得:x≤2.
表示在数轴上,如图所示:
.
故选:C.
8.解:A.由∠1=∠2可判断AD∥BC,不符合题意;
B.∠BAD=∠BCD不能判定图中直线平行,不符合题意;
C.由∠BAD+∠ADC=180°可判定AB∥DC,符合题意;
D.由∠3=∠4可判定AD∥BC,不符合题意;
故选:C.
9.解:由图可得,
,
解得,
∴2m﹣n=﹣4,故选项A错误;
m≠n,故B错误;
2m=n﹣4,故选项C正确;
4m≠n,故选项D错误;
故选:C.
10.解:∵A(0,﹣6),点B(0,3),
∴A,B两点间的距离=3﹣(﹣6)=9.
故选:B.
二.填空题(共6小题,满分18分,每小题3分)
11.解:∵=4,
∴x=43=64.
故答案为:64.
12.解:由题意得,x+4≥0,x﹣2≠0,
解得,x≥﹣4且x≠2,
故答案为:x≥﹣4且x≠2.
13.解:因为,=
所以,的相反数是﹣
故:答案为﹣
14.解:1﹣20%﹣12%﹣36%=32%
32%+36%=68%
答:本次测验这个班的优秀率为68%.
故答案为:68%.
15.解:由题意得,a+4=0,b﹣2=0,
∴a=﹣4,b=2,
∴a+b=﹣4+2=﹣2.
故答案为:﹣2.
16.解:∵△ABC沿BC方向向右平移1个单位得到△DEF,
∴AC=DF,AD=CF=1,
∵△ABC的周长为14,即AB+BC+AC=14,
∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=14+2=16.
故答案为:16.
三.解答题(共7小题,满分52分)
17.解:(1)方程组整理得:,
①﹣②得:x=3,
把x=3代入②得:y=4,
则方程组的解为;
(2)方程组整理得:,
①×2﹣②得:x=8,
把x=8代入①得:y=15,
则方程组的解为.
18.解:解不等式x﹣3(x﹣2)>4,得:x<1,
解不等式≤,得:x≥﹣7,
则不等式组的解集为﹣7≤x<1.
19.解:(1)如图,△ABC即为所求作.
(2)如图,△A1B1C1即为所求作.
20.证明:∵AD⊥BC,EF⊥BC,
∴∠ADF=∠EFC=90°,
∴AD∥EF,
∴∠2=∠DAC,
又∵∠3=∠C,
∴DG∥AC,
∴∠1=∠DAC,
∴∠1=∠2.
21.解:(1)设(1)班有x名学生,(2)班有y名学生,
由题意得:,
解得:.
答:(1)班有49名学生,(2)班有53名学生.
(2)1118﹣8×102=302(元).
答:两个班联合起来购票能省302元.
22.解:(1)平均数:(20+13+21+18+34+30+31+35+38+31)÷10=27.1(万人),
这10天的人数从小到大的排列为:13,18,20,21,30,31,31,34,35,38,
∴中位数=(30+31)÷2=30.5(万人),
由于31万出现了两次,其它数均为1次,故众数是31(万人);
(2)估计世博会184天中,持票入园超过30万人的天数是:.
23.(1)解:①∵O(0,0),A(6,0),C(0,3),
∴OA=6,OC=3,
∵四边形OABC是矩形,
∴AB=OC=3,BC=OA=6,
∴B(6,3),
∵动点Q从O点以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相等的速度沿AO向终点O运动.
∴当点P的运动时间为t(秒)时,
AP=t,OQ=+t,
则OP=OA﹣AP=6﹣t;
②当t=1时,OQ=,则CQ=CQ=OC﹣OQ=,
由折叠可知:△OPQ≌△DPQ,
∴OQ=DQ=,
由勾股定理,得:CD=1,
∴D(1,3);
(2)存在,如图所示,
设P点运动时间为t秒,则OQ=AP=t,PO=6﹣t,
当BP⊥PQ时,∠BPQ=90°,
∵四边形OABC是矩形,
∴∠COA=∠BAO=90°,
∴∠OPQ=∠ABP,
∴△POQ≌△BAP(AAS),
∴PO=BA=3,即6﹣t=3,
解得:t=3,
∴OQ=3,
∴PQ==3.
∴存在点P使BP⊥PQ,PQ=3.
2022-2023学年人教版七年级下册数学期末复习试卷: 这是一份2022-2023学年人教版七年级下册数学期末复习试卷,共16页。试卷主要包含了下列各数中,无理数的是,在平面直角坐标系中,点A等内容,欢迎下载使用。
2022-2023学年人教版数学七年级下册期末复习试卷+: 这是一份2022-2023学年人教版数学七年级下册期末复习试卷+,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年浙教版七年级下册数学期末复习试卷(含答案): 这是一份2022-2023学年浙教版七年级下册数学期末复习试卷(含答案),共14页。试卷主要包含了下列分式中,最简分式是,下列计算错误的是,下列调查最适合普查的是,如图AD∥BC可以得到等内容,欢迎下载使用。