2022年湖南省株洲市中考数学真题(解析版)
展开株洲市2022年初中学业水平考试数学试题卷
时量:120分钟
注意事项:
1.答题前,请按要求在答题卡上填写好自己的姓名和准考证号.
2.答题时,切记答案要填在答题卡上,答在试题卷上的答案无效.
3.考试结束后,请将试题卷和答题卡都交给监考老师.
一、选择题(本大题共10小题,每小题有且只有一个正确答案)
1. -2的绝对值是( )
A. 2 B. C. D.
【答案】A
【解析】
【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义进行求解即可.
【详解】在数轴上,点-2到原点的距离是2,所以-2的绝对值是2,
故选:A.
2. 在0、、-1、这四个数中,最小的数是( )
A. 0 B. C. -1 D.
【答案】C
【解析】
【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.
【详解】解:根据实数比较大小的方法,可得:,
∴在0、、-1、这四个数中,最小的数是-1.
故选C.
【点睛】此题主要考查了实数大小比较方法.解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
3. 不等式的解集是( ).
A. B. C. D.
【答案】D
【解析】
【分析】直接移项、合并同类项、不等号两边同时除以4即可求解.
【详解】解:4x−1<0
移项、合并同类项得:4x<1
不等号两边同时除以4,得:x<
故选:D.
【点睛】本题考查解一元一次不等式,掌握不等式的基本性质是解题的关键.
4. 某路段的一台机动车雷达测速仪记录了一段时间内通过的机动车的车速数据如下:67、63、69、55、65,则该组数据的中位数为( )
A. 63 B. 65 C. 66 D. 69
【答案】B
【解析】
【分析】根据中位数的定义求解即可;
【详解】解:将原数据排序为:55、63、65、67、69,
所以中位数为:65,
故选:B.
【点睛】本题主要考查中位数的定义,掌握中位数的定义是解题的关键.
5. 下列运算正确的是( )
A. B.
C. D.
【答案】A
【解析】
【分析】根据同底数幂相乘,幂的乘方,积的乘方,分式的化简,逐项判断即可求解.
【详解】解:A、,故本选项正确,符合题意;
B、,故本选项错误,不符合题意;
C、,故本选项错误,不符合题意;
D、,故本选项错误,不符合题意;
故选:A
【点睛】本题主要考查了同底数幂相乘,幂的乘方,积的乘方,分式的化简,熟练掌握相关运算法则是解题的关键.
6. 在平面直角坐标系中,一次函数的图象与轴的交点的坐标为( )
A. B. C. D.
【答案】D
【解析】
【分析】令x=0,求出函数值,即可求解.
【详解】解:令x=0, ,
∴一次函数的图象与轴的交点的坐标为.
故选:D
【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
7. 对于二元一次方程组,将①式代入②式,消去可以得到( )
A. B.
C D.
【答案】B
【解析】
【分析】将①式代入②式消去去括号即可求得结果.
【详解】解:将①式代入②式得,
,
故选B.
【点睛】本题考查了代入消元法求解二元一次方程组,熟练掌握代入消元法是解题的关键.
8. 如图所示,等边的顶点在⊙上,边、与⊙分别交于点、,点是劣弧上一点,且与、不重合,连接、,则的度数为( )
A. B. C. D.
【答案】C
【解析】
【分析】根据等边三角形的性质可得,再根据圆内接四边形的对角互补即可求得答案.
【详解】解:是等边三角形,
,
,
故选C.
【点睛】本题考查了等边三角形的性质及圆内接四边形的性质,熟练掌握圆内接四边形的对角互补是解题的关键.
9. 如图所示,在菱形中,对角线与相交于点,过点作交的延长线于点,下列结论不一定正确的是( )
A. B. 是直角三角形
C. D.
【答案】D
【解析】
【分析】由菱形的性质可知,,由两直线平行,同位角相等可以推出,再证明,得出,,由直角三角形斜边中线等于斜边一半可以得出.现有条件不足以证明.
【详解】解:∵在菱形中,对角线与相交于点,
∴,,
∴,
∵,
∴,
∴是直角三角形,故B选项正确;
∵,,
∴,
∴,
∴,,故A选项正确;
∴BC为斜边上的中线,
∴,故C选项正确;
现有条件不足以证明,故D选项错误;
故选D.
【点睛】本题考查菱形的性质,平行线的性质,相似三角形的判定与性质以及直角三角形斜边中线的性质,难度一般,由菱形的性质得出,是解题的关键.
10. 已知二次函数,其中、,则该函数的图象可能为( )
A. B.
C. D.
【答案】C
【解析】
【分析】利用排除法,由得出抛物线与y轴的交点应该在y轴的负半轴上,排除A选项和D选项,根据B选项和C选项中对称轴,得出,抛物线开口向下,排除B选项,即可得出C为正确答案.
【详解】解:对于二次函数,
令,则,
∴抛物线与y轴的交点坐标为
∵,
∴,
∴抛物线与y轴的交点应该在y轴的负半轴上,
∴可以排除A选项和D选项;
B选项和C选项中,抛物线的对称轴,
∵ ,
∴,
∴抛物线开口向下,可以排除B选项,
故选C.
【点睛】本题考查二次函数的图象的性质,熟练掌握二次函数图象与三个系数之间的关系是解题的关键.
二、填空题(本大题共8小题)
11. 计算:3+(﹣2)=_____.
【答案】1
【解析】
【分析】根据有理数的加法法则计算即可.
【详解】3+(﹣2)
=+(3﹣2)
=1,
故答案为1
【点睛】本题主要考查了有理数的加法,熟练掌握法则是解答本题的关键.
12. 因式分解:x2-25=_____________.
【答案】
【解析】
【分析】根据平方差公式分解因式即可.
【详解】解:
=
=
故答案为:
【点睛】本题考查了实数范围内分解因式,掌握 是解题的关键.
13. 某产品生产企业开展有奖促销活动,将每6件产品装成一箱,且使得每箱中都有2件能中奖.若从其中一箱中随机抽取1件产品,则能中奖的概率是_________.(用最简分数表示)
【答案】
【解析】
【分析】根据题意计算中奖概率即可;
【详解】解:∵每一箱都有6件产品,且每箱中都有2件能中奖,
∴P(从其中一箱中随机抽取1件产品中奖)=,
故答案为:.
【点睛】本题主要考查简单概率的计算,正确理解题意是解本题的关键.
14. 市安排若干名医护工作人员援助某地新冠疫情防控工作,人员结构统计如下表:
人员 | 领队 | 心理医生 | 专业医生 | 专业护士 |
占总人数的百分比 |
则该批医护工作人员中“专业医生”占总人数的百分比为_________.
【答案】40%
【解析】
【分析】根据图表数据进行求解即可;
【详解】解:该批医护工作人员中“专业医生”占总人数的百分比为:;
故答案为:40%
【点睛】本题主要考查统计表,从图表里获取信息并准确计算是解题的关键
15. 如图所示,点在一块直角三角板上(其中),于点,于点,若,则_________度.
【答案】15
【解析】
【分析】根据,,判断OB是的角平分线,即可求解.
【详解】解:由题意,,,,
即点O到BC、AB的距离相等,
∴ OB是的角平分线,
∵ ,
∴.
故答案为:15.
【点睛】本题考查角平分线的定义及判定,熟练掌握“到一个角的两边距离相等的点在这个角的平分线上”是解题的关键.
16. 如图所示,矩形顶点、在轴上,顶点在第一象限,轴为该矩形的一条对称轴,且矩形的面积为6.若反比例函数的图象经过点,则的值为_________.
【答案】3
【解析】
【分析】由图得,轴把矩形平均分为两份,即可得到上半部分的面积,利用矩形的面积公式即,又由于点C在反比例函数图象上,则可求得答案.
【详解】解:轴为该矩形的一条对称轴,且矩形的面积为6,
,
,
故答案为3.
【点睛】本题考查了反比例函数k几何意义,熟练掌握是解题的关键.
17. 如图所示,已知,正五边形的顶点、在射线上,顶点在射线上,则_________度.
【答案】48
【解析】
【分析】是正五边形的一个外角,利用多边形外交和360°算出一个外角,再利用的内角和180°,即可算出
【详解】∵四边形ABCDE是正五边形,是一个外角
∴
在中:
故答案为:48
【点睛】本题考查多边形外角和和三角形内角和,注意多边形外角和均为360°
18. 中国元代数学家朱世杰所著《四元玉鉴》记载有“锁套吞容”之“方田圆池结角池图”.“方田一段,一角圆池占之.”意思是说:“一块正方形田地,在其一角有一个圆形的水池(其中圆与正方形一角的两边均相切)”,如图所示.问题:此图中,正方形一条对角线与⊙相交于点、(点在点的右上方),若的长度为10丈,⊙的半径为2丈,则的长度为_________丈.
【答案】
【解析】
【分析】如图,先根据正方形的性质得出,再解直角三角形求出AO的长度,则.
【详解】解:如图,
设⊙与AD边的切点为点C,连接OC,
则(丈),,
由正方形的性质知,对角线AB平分,
∴,
∴(丈),
∴(丈),
∴(丈),
故答案为:.
【点睛】本题考查正方形的性质,圆的切线的定义,解直角三角形等,通过解直角三角形求出AO的长度是解题的关键.
三、解答题(本大题共8小题)
19. 计算:.
【答案】3
【解析】
【分析】分别计算负数的偶次幂、二次根式、特殊角的正弦值,再进行加减即可.
【详解】解:.
【点睛】本题考查负数的偶次幂、二次根式化简以及特殊角的三角函数值,属于基础题,正确计算是解题的关键.
20. 先化简,再求值:,其中.
【答案】,
【解析】
【分析】先将括号内式子通分,再约分化简,最后将代入求值即可.
【详解】解:,
将代入得,
原式.
【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则和完全平方公式是解题的关键.
21. 如图所示,点在四边形的边上,连接,并延长交的延长线于点,已知,.
(1)求证:;
(2)若,求证:四边形为平行四边形.
【答案】(1)见解析 (2)见解析
【解析】
【分析】(1)利用SAS可以直接证明;
(2)由可得,由内错角相等,两直线平行,得出,结合已知条件即可证明四边形为平行四边形.
【小问1详解】
证明:∵与是对顶角,
∴,
在与中,
,
∴
【小问2详解】
证明:由(1)知,
∴,
∴,
∵点在的延长线上,
∴,
又∵,
∴四边形为平行四边形.
【点睛】本题考查全等三角形的判定与性质,平行线的判定和平行四边形的判定,难度较小,熟练掌握全等三角形、平行线及平行四边形的判定方法是解题的关键.
22. 如图1所示,某登山运动爱好者由山坡①的山顶点A处沿线段至山谷点处,再从点处沿线段至山坡②的山顶点处.如图2所示,将直线视为水平面,山坡①的坡角,其高度为0.6千米,山坡②的坡度,于,且千米.
(1)求的度数;
(2)求在此过程中该登山运动爱好者走过的路程.
【答案】(1)105°
(2)
【解析】
【分析】(1)根据山坡②的坡度,可求,即可求解;
(2)由余弦值和正弦值分别求出BC、AC即可求解;
【小问1详解】
解:∵山坡②的坡度,
∴,
∴,
∵,
∴,
【小问2详解】
∵,,
∴,
∴千米,
∵,,
∴,
∴,
∴该登山运动爱好者走过的路程..
【点睛】本题主要考查锐角三角函数的综合应用,掌握锐角三角函数的相关知识是解题的关键.
23. 某校组织了一次“校徽设计”竞赛活动,邀请5名老师作为专业评委,50名学生代表参与民主测评,且民主测评的结果无弃权票.某作品的评比数据统计如下:
专业评委 | 给分(单位:分) |
① | 88 |
② | 87 |
③ | 94 |
④ | 91 |
⑤ | 90 |
记“专业评委给分”的平均数为.
(1)求该作品在民主测评中得到“不赞成”的票数;
(2)对于该作品,问的值是多少?
(3)记“民主测评得分”为,“综合得分”为,若规定:①“赞成”的票数分+“不赞成”的票数分;②.求该作品的“综合得分”的值.
【答案】(1)10张 (2)90分
(3)96分
【解析】
【分析】(1)用投票总数50减去投赞成票的张数40即可;
(2)根据平均数公式求解即可;
(3)根据所给计算方法代入数据计算即可.
【小问1详解】
解:50-40=10张;
【小问2详解】
解: =(88+87+94+91+90) ÷5=90分;
【小问3详解】
解:40+10=110分;
分.
【点睛】本题考查了统计的知识,熟练掌握及平均数的计算公式是解答本题的关键.
24. 如图所示,在平面直角坐标系中,点A、分别在函数、的图象上,点在第二象限内,轴于点,轴于点,连接、,已知点A的纵坐标为-2.
(1)求点A的横坐标;
(2)记四边形的面积为S,若点的横坐标为2,试用含的代数式表示S.
【答案】(1)A(-1,-2)
(2)
【解析】
【分析】(1)将y=-2代入中即可求解;
(2)由题意可得B(2,),则C(-1,),由即可求解;
小问1详解】
解:将y=-2代入中,
,解得:,
∴A(-1,-2).
小问2详解】
由题意可得B(2,),
∵轴,轴,
∴C(-1,),
∴
.
【点睛】本题主要考查反比例函数的应用,掌握反比例函数相关知识是解题的关键.
25. 如图所示,的顶点、在⊙上,顶点在⊙外,边与⊙相交于点,,连接、,已知.
(1)求证:直线是⊙的切线;
(2)若线段与线段相交于点,连接.
①求证:;
②若,求⊙的半径的长度.
【答案】(1)见解析 (2)①见解析;②
【解析】
【分析】(1)根据圆周角定理可得∠BOD=2∠BAC=90°,再由OD∥BC,可得CB⊥OB,即可求证;
(2)①根据∠BOD=2∠BAC=90°,OB=OD,可得∠BAC=∠ODB,即可求证;②根据,可得,即,再由勾股定理,即可求解.
【小问1详解】
证明∶∵∠BAC=45°,
∴∠BOD=2∠BAC=90°,
∴OD⊥OB,
∵OD∥BC,
∴CB⊥OB,
∵OB为半径,
∴直线是⊙的切线;
【小问2详解】
解:①∵∠BAC=45°,
∴∠BOD=2∠BAC=90°,OB=OD,
∴∠ODB=45°,
∴∠BAC=∠ODB,
∵∠ABD=∠DBE,
∴;
②∵,
∴,
∴,
∵,
∴,
∵,
∴,
∴或(舍去).
即⊙的半径的长为.
【点睛】本题主要考查了切线的判定,圆周角定理,相似三角形的判定和性质,勾股定理等知识,熟练掌握切线的判定,圆周角定理,相似三角形的判定和性质是解题的关键.
26. 阅读材料:十六世纪的法国数学家弗朗索瓦·韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式时,关于的一元二次方程的两个根、有如下关系:,”.此关系通常被称为“韦达定理”.已知二次函数.
(1)若,,且该二次函数的图象过点,求的值;
(2)如图所示,在平面直角坐标系中,该二次函数的图象与轴相交于不同的两点、,其中、,且该二次函数的图象的顶点在矩形的边上,其对称轴与轴、分别交于点、,与轴相交于点,且满足.
①求关于的一元二次方程的根的判别式的值;
②若,令,求的最小值.
【答案】(1)-3 (2)①;②当时,最小=-4
【解析】
【分析】(1)将点代入从而求结果即可;
(2)①根据题意,表示出AE、AB,根据即可得出结果;②根据得,从而求出b,进而得到a、c得关系,代入即可求出最值.
【小问1详解】
解:将,代入得,
将代入得,
,解得:
【小问2详解】
①∵
∴
∴
∵抛物线的顶点坐标为:
∴
∴
∴
②∵
∴
∵
∴
∴
∴b=2
∴
∴
∴,
∴当时,最小=-4.
【点睛】本题考查二次函数及图象性质,二次函数和一元二次方程之间的关系,平行线分线段成比例定理,锐角三角函数定义等知识,解决问题的关键在于根据点的坐标表示出线段.
2023年湖南省株洲市中考数学真题试卷(解析版): 这是一份2023年湖南省株洲市中考数学真题试卷(解析版),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年湖南省株洲市中考数学真题(解析版): 这是一份2023年湖南省株洲市中考数学真题(解析版),共20页。试卷主要包含了 2的相反数是, 计算, 一技术人员用刻度尺, 将关于x的分式方程去分母可得等内容,欢迎下载使用。
湖南省株洲市2020年中考数学真题(解析版): 这是一份湖南省株洲市2020年中考数学真题(解析版),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。