年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2023年山东省烟台市龙口市中考数学二模试卷(含解析)

    2023年山东省烟台市龙口市中考数学二模试卷(含解析)第1页
    2023年山东省烟台市龙口市中考数学二模试卷(含解析)第2页
    2023年山东省烟台市龙口市中考数学二模试卷(含解析)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年山东省烟台市龙口市中考数学二模试卷(含解析)

    展开

    这是一份2023年山东省烟台市龙口市中考数学二模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    2023年山东省烟台市龙口市中考数学二模试卷一、选择题(本大题共10小题,共30.0分。在每小题列出的选项中,选出符合题目的一项)1.  中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹小棍形状的记数工具正放表示正数,斜放表示负数如图,根据刘徽的这种表示法,图可列式计算为,由此可推算图中计算所得的结果为(    )
    A.  B.  C.  D. 2.  下列运算正确的是(    )A.  B.
    C.  D. 3.  如图是我国四家新能车企的标志,其中是中心对称图形但不是轴对称图形的是(    )A.  B.
    C.  D. 4.  餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心据统计,中国每年浪费的食物总量折合粮食约亿千克,这个数据用科学记数法表示为(    )A. 千克 B. 千克 C. 千克 D. 千克5.  实数在数轴上的对应点的位置如图所示,如果,那么下列结论正确的是(    )A.  B.  C.  D. 6.  下表是某校乐团的年龄分布,其中一个数据被遮盖了,下面对于中位数的说法正确的是(    )年龄频数 A. 中位数是 B. 中位数可能是
    C. 中位数是 D. 中位数可能是7.  在数学活动课上,兴趣小组的同学用一根质地均匀的轻质木杆和若干个钩码做实验.如图所示,在轻质木杆处用一根细线悬挂,左端处挂一重物,右端处挂钩码,每个钩码质量是,挂个钩码可使轻质木杆水平位置平衡.设重物的质量为,根据题意列方程得(    )
    A.  B.
    C.  D. 8.  如图所示,电路图上有三个开关和一个小灯泡,闭合开关或者同时闭合开关,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于(    )A.  B.  C.  D. 9.  运用我们课本上采用的计算器进行计算时,下列说法不正确的是(    )A. 计算的按键顺序依次为
    B. 要打开计算器并启动其统计计算功能应按的键是
    C. 启动计算器的统计计算功能后,要清除原有统计数据应按键
    D. 用计算器计算时,依次按如下各键,最后显示结果是10.  已知二次函数的部分对应值如下表: 根据表格中的信息,得到了如下的结论:
    二次函数可改写为的形式;
    二次函数的图象开口向下;
    关于的一元二次方程的两个根为
    ,则,其中所有正确的结论为(    )A.  B.  C.  D. 二、填空题(本大题共6小题,共18.0分)11.  因式分解: ______ 12.  已知反比例函数的图象的一个分支位于第三象限,则的取值范围是______13.  对于实数定义新运算:,若关于的方程有两个不相等的实数根,则的取值范围为______ 14.  如图,由边长为的小正方形构成的网格中,点都在格点上,以为直径的圆经过点,则的值为______
     15.  如图,中,,点的延长线上,的中点,连接,若,则的长为______
     16.  国际象棋的棋盘上共有个小方格,假设在棋盘上摆米,第格放粒米,第格放粒米,第格放粒米,然后是粒,粒,一直到格,故棋盘上可摆的米粒总数,则的个位数字为______ 三、解答题(本大题共8小题,共64.0分。解答应写出文字说明,证明过程或演算步骤)17.  本小题
    计算:先化简,再求值:,其中18.  本小题
    如图,四边形是菱形,点分别在边的延长线上,且,连接求证:
    19.  本小题
    我市某学校落实立德树人根本任务,构建“五育并举”教育体系,开设了“厨艺、园艺、电工、木工、编织”五大类劳动课程.为了解七年级学生对每类课程的选择情况,随机抽取了七年级若干名学生进行调查每人只选一类最喜欢的课程,将调查结果绘制成如图两幅不完整的统计图:

    本次随机调查的学生人数为______人;
    补全条形统计图;
    若该校七年级共有名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数;
    班计划在“园艺、电工、木工、编织”四大类劳动课程中任选两类参加学校期末展示活动,请用列表或画树状图的方法,求恰好选中“园艺、编织”这两类劳动课程的概率.20.  本小题
    某校为检测师生体温,在校门安装了某型号的测温门,如图为该“测温门”截面示意图身高米的小聪做了如下实验:当他在地面处时“测温门”开始显示额头温度,此时在额头处测得的仰角为;当他在地面处时,“测温门”停止显示额头温度,此时在额头处测得的仰角为如果测温门顶部处距地面的高度米,求小聪在有效测温区间的长度约为多少米?保留两位小数,注:额头到地面的距离以身高计,
    21.  本小题
    为加快产品生产的效率,某工厂将使用两种型号机器生产产品,已知型机器比型机器每小时多生产,且型机器生产所用时间与型机器生产所用时间相等.
    求这两种机器每小时分别生产多少产品?
    该工厂为了在每小时以内至少完成产品生产的任务量,决定使用两种型号机器共台,并且同时开始生产产品,那么至少需要型号机器多少台?22.  本小题
    如图,的切线,为切点,弦,连接并延长,与交于点,与交于点,连接并延长,与交于点,连接
    求证:
    ,求线段的长.
    23.  本小题
    将正方形的边绕点逆时针旋转至,旋转角记为,过点垂直于直线,垂足为点,连接

    如图,当时,请判断的形状不用写出证明过程
    如图,当时,中的结论是否仍然成立?如果成立,请写出证明过程,并求出的值;如果不成立,请说明理由;24.  本小题
    如图,已知抛物线轴交于两点,与轴交于点,点的坐标为

    求抛物线的表达式;
    是抛物线对称轴上的一个动点,求的最小值;
    设点是抛物线上一点,其横坐标为,在抛物线上是否存在一点,使得被直线平分?若存在,请求出点的坐标;若不存在,说明理由.
    答案和解析 1.【答案】 【解析】解:由题意得:
    故选:
    根据图示得出两个数,然后再进行求和得出答案.
    本题主要考查的是有理数的加法与阅读理解型,属于基础题型.理解题意是解题的关键.
     2.【答案】 【解析】解:,本选项符合题意;
    B,本选项不符合题意;
    C,本选项不符合题意;
    D,本选项不符合题意;
    故选:
    根据同底数幂乘法,积的乘方,单项式除以单项式和完全平方公式的计算法则求解判断即可.
    本题主要考查了同底数幂乘法,积的乘方,单项式除以单项式和完全平方公式,熟知相关计算法则是解题的关键.
     3.【答案】 【解析】解:既是中心对称图形,也是轴对称图形,故此选项不合题意;
    B.是中心对称图形但不是轴对称图形,故此选项符合题意;
    C.既是中心对称图形,也是轴对称图形,故此选项不合题意;
    D.不是中心对称图形,也不是轴对称图形,故此选项不合题意;
    故选:
    根据中心对称图形与轴对称图形的概念进行判断即可.
    本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转度后与自身重合.
     4.【答案】 【解析】解:亿千克千克千克.
    故选:
    科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正整数;当原数的绝对值时,是负整数.
    此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定的值以及的值.
     5.【答案】 【解析】解:
    互为相反数,
    原点在中间,
    选项不符合题意;
    在原点右侧,在原点左侧,


    选项符合题意;

    选项不符合题意;
    选项不符合题意.
    故选:
    利用,可得互为相反数,从而判断出表示的数,推理即可.
    本题考查实数的大小比较,解题的关键是观察数轴,确定各点表示的数.
     6.【答案】 【解析】解:
    由列表可知,人数大于人,
    则中位数是
    故选:
    根据列表,由中位数的概念计算即可.
    本题考查的是列表和中位数的概念,读懂列表,从中得到必要的信息、掌握中位数的概念是解决问题的关键.
     7.【答案】 【解析】解:依题意得:
    故选:
    利用重物的质量的长度个钩码的质量的长度,即可得出关于的一元一次方程,此题得解.
    本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.
     8.【答案】 【解析】解:闭合开关或者同时闭合开关,都可使小灯泡发光,
    任意闭合其中一个开关共有种等可能的结果,而小灯泡发光的只有选择闭合
    小灯泡发光的概率等于:
    故选:
    根据题意可得任意闭合其中一个开关共有种等可能的结果,而小灯泡发光的只有选择闭合,然后利用概率公式求解即可求得答案.
    此题考查了概率公式的应用.此题比较简单,注意概率所求情况数与总情况数之比.
     9.【答案】 【解析】解:选项,计算的按键顺序正确,本选项不符合题意;
    选项,要打开计算器并启动其统计计算功能应按的键正确,本选项不符合题意,
    选项,启动计算器的统计计算功能后,要清除原有统计数据应按键,说法正确,本选项不符合题意,
    选项,用计算器计算时,依次按如下各键,最后显示结果是,不是,原说法错误,本选项符合题意,
    故选:
    根据计算器的使用方法依次判断各个选项即可.
    本题主要考查计算器的基础知识,熟练掌握计算器的使用是解题的关键.
     10.【答案】 【解析】解:由表格可得,
    该函数的图象经过
    该函数图象的对称轴是直线
    该函数图象的顶点坐标是,有最小值,开口向上,
    二次函数可改写为的形式,
    故选项正确,选项错误;
    该函数的图象经过
    关于的一元二次方程即方程的两个根为,故选项正确;
    该函数的图象经过,关于对称轴的对称点为,且开口向上,
    ,则,故选项错误;
    综上,正确的结论为
    故选:
    根据表格中的数据和二次函数的性质,可以判断各个选项中的说法是否正确,本题得以解决.
    本题考查的是抛物线与轴的交点,要求学生非常熟悉函数与坐标轴的交点、顶点等点所代表的意义、图象上点的坐标特征等.
     11.【答案】 【解析】解:


    故答案为:
    先提取公因式,再运用平方差公式继续分解.
    本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
     12.【答案】 【解析】解:反比例函数的图象的一个分支位于第三象限,

    解得:
    故答案为:
    由反比例函数图象过第一、三象限,得到反比例系数大于,列出关于的不等式,求出不等式的解集得到的范围.
    本题考查了反比例函数的性质.反比例函数,当时函数图象位于第一、三象限;当时,函数图象位于第二、四象限.
     13.【答案】 【解析】解:

    整理得

    解得
    故答案为:
    根据新定义得到,再把方程化为一般式,然后根据根的判别式的意义得到,再解不等式即可.
    本题考查了一元二次方程根的判别式,熟知一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根是解题的关键.
     14.【答案】 【解析】解:连接
    由图可得:
    为直径,



    故答案为:
    根据勾股定理求得直径的长,再根据圆周角定理得到,再根据余弦函数的定义计算即可.
    本题主要考查了圆周角定理,余弦函数,熟悉掌握余弦的比值关系是解题的关键.
     15.【答案】 【解析】解:中,

    延长,使,连接,延长于点


    是等边三角形,

    四边形是平行四边形,

    是等边三角形,


    的中点,
    的中位线,

    故答案为:
    延长,使,连接,延长于点,得到是等边三角形,推出是边长为等边三角形,证明的中位线,根据三角形中位线定理即可求解.
    本题考查了等边三角形的判定和性质,平行四边形的性质,三角形中位线定理,掌握“三角形的中位线平行于三角形的第三边,并且等于第三边的一半”是解题的关键.
     16.【答案】 【解析】解:
    个位数是以项为一组循环,个位数字的和为
    即个位数是以项为一组循环,且个位数字为
    的末位数字与的末位数字相同,是的末位数字与的末位数字相同,是的末位数字与的末位数字相同,是
    的个位数字为
    的个位数字为
    故答案为:
    通过计算可以看出,个位数是以项为一组循环的,用除以,余数是几就与第几项的个位数相同,即可解答.
    本题考查了规律型:数字的变化.解答本题的关键是从题意中找出规律:个位数是以项为一组循环,且个位数字为
     17.【答案】解:





    原式 【解析】先根据分式化简的运算法则将式子化为最简式,然后根据三角函数值计算的结果代入即可
    本题主要考查分式的化简求值及特殊角的三角函数值,熟练掌握分式化简的运算法则和熟记三角函数值是解决问题的关键.
     18.【答案】解:四边形是菱形,




    中,


     【解析】由四边形是菱形,得出,根据等角的补角相等得出,从而即可.
    本题主要考查了菱形的性质,以及全等三角形的判定与性质,证出是解题的关键.
     19.【答案】
    解:,补全条形统计图如图所示:


    答:该校七年级名学生中选择“厨艺”劳动课程的有人;
    用列表法表示所有可能出现的结果如下:

    共有种等可能出现的结果,其中选中“园艺、编织”的有种,
     【解析】【分析】
    本题考查条形统计图、扇形统计图的意义和制作方法、用样本估计总体的思想、列表法求随机事件发生的概率,理解数量关系和列举所有可能出现的结果情况是解决问题的关键.
    从两个统计图中可得,选择“园艺”的有人,占调查人数的,可求出调查人数;
    求出选择“编织”的人数,即可补全条形统计图;
    样本中,选择“厨艺”的占,因此估计总体人的是选择“厨艺”的人数.
    用列表法表示所有可能出现的结果,进而计算选中“园艺、编织”的概率.
    【解答】
    解:
    故答案为
    见答案;
    见答案;
    见答案.  20.【答案】解:如图,延长于点

    中,

    中,


    答:小聪在有效测温区间的长度约为米. 【解析】延长于点,则,再求出的长,进而可得结果.
    本题考查了解直角三角形的应用--仰角俯角问题,能借助仰角构造直角三角形是解题的关键.
     21.【答案】解:种型号机器每小时生产产品,种型号机器每小时生产产品,根据题意得:
    解得:
    经检验,是原方程的解,

    答:种型号机器每小时生产产品,种型号机器每小时生产产品;
    设需要型号机器台,则需要型号机器台,
    根据题意得:
    解得:
    答:至少需要型号机器台. 【解析】种型号机器每小时生产产品,种型号机器每小时生产产品,根据型机器生产所用时间与型机器生产所用时间相等.列出分式方程,解方程即可;
    设需要型号机器台,则需要型号机器台,根据在每小时以内至少完成产品生产的任务量,列出一元一次不等式,解不等式即可.
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出分式方程;找出数量关系,正确列出一元一次不等式.
     22.【答案】证明:延长于点
    的切线,



    的直径,







    ,即
    解得:

    四边形为矩形,

     【解析】延长于点,根据切线的性质得到,根据圆周角定理得到,根据平行线的判定定理证明结论;
    根据垂径定理求出,根据勾股定理求出,根据相似三角形的性质计算即可.
    本题考查的是切线性质、相似三角形的判定和性质、矩形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
     23.【答案】解:为等腰直角三角形.理由如下:
    四边形是正方形,

    绕点逆时针旋转至





    为等腰直角三角形;
    解:中的结论仍然成立.
    绕点逆时针旋转至


    四边形是正方形,











    为等腰直角三角形.
    连接





     【解析】先证明,利用等边对等角,求得,利用平角的定义可求得,即可求得为等腰直角三角形;
    连接,证明为等腰直角三角形.利用“两边对应成比例且夹角相等,两个三角形相似”证明,据此即可求解.
    本题考查了正方形的性质,旋转的性质,相似三角形的判定和性质,等腰直角三角形的判定和性质,掌握相似三角形的判定定理“两边对应成比例且夹角相等,两个三角形相似”是解题的关键.
     24.【答案】解:把点代入中,得
    解得
    故抛物线的表达式为
    ,令
    的坐标为
    ,则
    解得
    的坐标为


    连接交抛物线对称轴于点,则此时的值最小,
    关于抛物线的对称轴对称,


    中,
    的最小值为
    是抛物线上一点,其横坐标为


    设直线的表达式为,将点代入可得


    设点
    线段的中点的坐标为
    直线平分线段
    直线过点
    将点的坐标代入,得
    解得
    时,
    时,

     【解析】将点的坐标的代入关系式求出的值,可得答案;
    分别求出点,点的坐标,再判断的最小值,然后根据勾股定理求出答案;
    先求出点的坐标,进而求出直线的表达式,设点,表示点的坐标,然后将点的坐标代入,求出的值,即可得出答案.
    本题考查二次函数的综合、求二次函数关系式,根据轴对称求线段和最小,待定系数法求一次函数关系式,解一元二次方程等,掌握相关知识是解题的关键.
     

    相关试卷

    2023年山东省烟台市莱阳市中考数学二模试卷(含解析):

    这是一份2023年山东省烟台市莱阳市中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省烟台市龙口市中考数学二模试卷(含解析):

    这是一份2023年山东省烟台市龙口市中考数学二模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年山东省烟台市龙口市达标名校中考数学适应性模拟试题含解析:

    这是一份2022年山东省烟台市龙口市达标名校中考数学适应性模拟试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列方程中,是一元二次方程的是,在平面直角坐标系中,将点P等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map