郸城县2023年六年级数学第二学期期末经典试题含解析
展开
这是一份郸城县2023年六年级数学第二学期期末经典试题含解析,共13页。试卷主要包含了选择题,填空题,计算题,按要求画图,解答题等内容,欢迎下载使用。
1.下图是一个长3厘米、宽与高都是2厘米的长方体.将它挖掉一个棱长1厘米的小正方体,它的表面积( ).
A.比原来大B.比原来小C.不变D.无法确定
2.请找出既满足分子与分母的积是24,又满足分子与分母的和为奇数的所有真分数,这些真分数的和为( ).
A.B.C.D.
3.小于且大于的分数有( )个.
A.2 B.3 C.1 D.无数
4.一个正方体的棱长扩大到原来的2倍,它的表面积就会扩大到原来的( )倍。
A.2B.4C.8
5.一个挂钟,钟面上的时针长5厘米,经过一昼夜时针的针尖走过( )厘米。
A.15.7B.31.4C.62.8D.78.5
6.m、n都是非零自然数,n=7m,则n、m的最小公倍数是( )。
A.7B.nC.mD.1
7.甲、乙两数的最大公因数是18,那么甲、乙两数的公因数有( )个。
A.4B.6C.8
8.有4颗外表一模一样的玻璃珠子,其中有一颗玻璃珠子是次品(质量轻一些)。下面是李思找次品的过程:
根据李思找次品的过程,可以知道( )号玻璃珠是次品。
A.①B.②C.③D.④
9.五(3)班有28名男生,25名女生,男生占全班人数的( )。
A. B. C. D.
二、填空题。
10.=3÷4==15÷( )=( )(填小数)
11.比较下列各组数的大小.
○0.4 0.667○ ○0.279
12.把3米长的钢管平均截成7段,每段是这跟钢管的,每段长是米。
13. “六一”期间,某商场举行促销活动,所有商品八五折出售。小丽买一件上衣花去了102元,这件上衣的原价是(____)元。
14.在括号里填上“”“”或“”。
(________) (________)
(________) (________)
15.实验小学五年级的学生排队,若每行站15人,少5人。若每行站18人,也少5人。这个年级的人数在300到400之间,五年级有(________)人。
16.五年级(1)班有男生24人,女生18人.现在要把男生和女生各分成若干小组,并且每个小组的人数要相同,每组最多有(____)人.
17.15秒=(______)分 5.05m³=(______) dm³ 600mL=(______) L
18.小明的QQ号是由9位数组成的5A13B47CD。其中A的最大因数是8,B是最小的素数,C是2和3的公倍数,D既是奇数又是合数。小明的0Q号是(______)。
19.0.35 dm3=(____)cm3
360毫升=(____)升
20.把棱长8厘米的正方体铁块,熔铸成一个横截面积是20平方厘米的长方体,这个长方体的长是(______)厘米.
21.3÷( )=0.375=( )÷40==
22.一个分数,分子加1后,其值为;分子减1后,其值为。这个分数是____。
23.下图中正方形的面积是20平方分米,圆的面积是(__________)平方分米.
三、计算题。
24.直接写出得数
﹣= ﹣= ﹣= += +=
1﹣= += ﹣= += ﹣=
25.解方程.
(1)x-=38.9 (2)x+=20
(3)-+x=31 (4)-x=
26.计算下面各题,能简便的要简便计算。
四、按要求画图。
27.(1)把三角形ABC绕点B顺时针旋转90°,画出旋转后的图形。
(2)将图2向下平移3格,画出平移后的图形。
28.在下图中涂出。
五、解答题。
29.体育馆有一个圆形游泳池,刘涛绕游泳池周围走一圈,一共走了188.4米。这个游泳池的占地面积有多大?
30.如图,在△ABC中,DC=2BD,CE=3AE,已知△ADE的面积是10平方厘米,求△ABC的面积。
31.一个长方形的周长是19.2米,长是宽的3倍。这个长方形的宽是多少米?
32.五(2)班有女生18人,比男生少6人.女生人数占全班人数的几分之几?
33.一辆货车和一辆客车同时从甲地出发,沿同一条公路开往乙地,3小时后,客车到达乙地,货车距离乙地还有90千米.已知货车的速度是80千米/时,求客车的速度.(列方程解答)
34.五(1)班有45人,大课间活动中,有14人跳绳,25人踢毽子,其他同学在跑步。跑步的同学占全班人数的几分之几?
参考答案
一、选择题。(选择正确答案的序号填在括号内)
1、A
【解析】挖掉1个小正方体后,表面减少2个面同时又增加4个面.
2、D
【详解】积为24,有以下几种情况:1×24、2×12、3×8、4×6,则可能的真分数是,,,,对应的分子与分母的和分别为25、14、11、10,满足条件的所有真分数的和为+=+==
故答案为D.
3、D
【解析】略
4、B
【分析】正方体的表面积=6×棱长×棱长,据此可设原来正方体棱长为a,那么扩大后的棱长为2a,据此带入公式求解即可。
【详解】当正方体的棱长=a时,表面积=6;
当正方体的棱长=2a时,表面积=6=24;
当棱长扩大2倍,表面积扩大4倍。
故答案为:B
此题需要掌握最基本的正方体面积公式,带入以及平方的求解是此题的关键。
5、C
【解析】略
6、B
【分析】求两个数的最小公倍数,如果两个数是倍数关系,那么它们的最小公倍数是较大的数;据此解答。
【详解】因为m、n都是非零自然数,且n=7m,所以n与m成倍数关系,所以n、m的最小公倍数是n。
故答案为:B
本题主要考查求两个数的最小公倍数的方法,解题时要明确:成倍数关系时两数的最小公倍数是较大的那个数。
7、B
【分析】两数的最大公因数是18,那么18有因数就是这两数的公因数,据此解答。
【详解】已知两数的最大公因数是18,那么这两数的公因数为:1,2,3,6,9,18共有6个。
故选: B。
本题考查了公因数和最大公因数。明确它们之间的关系认真解答即可。
8、B
【分析】第一次称量,可知次品在①②中,通过第二次称量可知,次品是②,据此选择。
【详解】由分析可知,②号玻璃珠是次品。
故选择:B。
此题考查了找次品的方法,根据次品轻一些,需每次都找较轻的一边。
9、C
【解析】略
二、填空题。
10、16 9 20 0.75
【解析】略
11、>;>;>
【详解】略
12、;
【分析】把全长看成单位“1”,平均截成了7段,那么每段的长度就是全长的;
用全长3米除以平均分的份数就是每段的长度。
【详解】1÷7=;
3÷7=(米);
答:每段是这跟钢管的,每段长是米。
故答案为:,。
本题要注意每份的长度与每份是总长的几分之几的区别:前者是一个具体的数量,用除法的意义求解;后者是一个分率,根据分数的意义求解。
13、120
【解析】略
14、> < < =
【分析】小数与分数比大小,一般将分数化为小数,再根据小数大小的比较方法进行比较;有运算的分数比大小要先分别求出两边的值,再进行比较;据此解答。
【详解】=1.6
1.9>1.6,所以1.9>;
=2,==2
2<2,所以<;
=
<,所以<;
=6,=6
6=6,所以=;
故答案为:>;<;<;=
本题主要考查分数的大小比较,有运算的分数比大小要先分别求出两边的值,再进行比较。
15、355
【分析】先求出15和18两个数的最小公倍数,再根据最小公倍数写出最小公倍数的倍数,一直写到300至400之间,最后再减去少的5人,即可解答。
【详解】15=3×5,18=2×3×3,15和18的最小公倍数是2×3×3×5=90。
90×4-5
=360-5
=355(人)
此题考查的两个数的最小公倍数,属于基础知识,需牢牢掌握。
16、6
【解析】略
17、 5050 0.6
【分析】高级单位化低级单位乘进率,低级单位化高级单位除以进率。据此解答。
【详解】低级单位秒化高级单位分除以进率60。
15÷60=分
所以:15秒=分
高级单位m³化低级单位dm³乘进率1000。
5.05×1000=5050dm³
所以:5.05m³=5050dm³
低级单位mL化高级单位L除以进率1000。
600÷1000=0.6L
所以:600mL=0.6L
大单位化小单位乘进率,小单位化大单位除以进率。常用单位之间的进率一定要记清。
18、581324769
【分析】小明的QQ号是由9位数组成的,说明A、B、C、D均是大于0小于10的数,再根据一个数的最大公因数、质数、合数和公倍数的的特征解答即可。
【详解】A的最大因数是A,所以A=8;
B是最小的素数,最小的素数=2,所以B=2;
C是2和3的公倍数,且0<C<10,所以C=2×3=6;
D既是奇数又是合数,且0<D<10,所以D=9
故小明的QQ号是:581324769
一个数的最大公因数是它本身;最小的质数是2;两个质数的最小公倍数是它们的乘积。质数只有1和它本省两个因数,合数除了1和它本身,还有其他的因数。
19、350 0.36
【解析】略
20、25.6
【解析】第一点是正方体的体积等于变化后长方体的体积,第二点是用体积=底面积×高.也就是体积=横截面积×长,求长=体积÷横截面积.
21、8;15;6;32
【解析】略
22、
【分析】通分先把分母化相同,只要分子相差:1+1=2,然后分别加减1后就是分子。
【详解】=,=,
6﹣4=2,
6﹣1=5或4+1=5,
所以是;
故答案为。
此题主要考查通分和约分。
23、31.4
【解析】略
三、计算题。
24、
1
【详解】略
25、x=39.3, x=19, x=30, x=
【详解】(1)x-=38.9
解:x-0.4+0.4=38.9+0.4
x=39.3
(2)x+=20
解:x+-=20-
x=19
(3)-+x=31
解:-+x-+=31-+
x=30
(4)-x=
解:-x+x=+x
+x-=-
x=
26、;;;
【分析】(1)从左到右依次计算,先通分,再加减,能约分要进行约分;
(2)运用减法的性质和交换律进行简便计算即可;
(3)利用加法的交换律,算式中只有加减法,可以先算减法,再算加法;
(4)利用加法的交换律和减法的性质进行简便计算即可;
【详解】
此题考查分数加减混合运算,要仔细观察算式的特点,灵活运用一些定律进行简便计算。
四、按要求画图。
27、
【分析】(1)作旋转一定角度后的图形步骤:根据题目要求,确定旋转中心、旋转方向和旋转角;分析所作图形,找出构成图形的关键点;找出关键点的对应点:按一定的方向和角度分别作出各关键点的对应点;作出新图形,顺次连接作出的各点即可。
(2)作平移后的图形步骤:找点-找出构成图形的关键点;定方向、距离-确定平移方向和平移距离;画线-过关键点沿平移方向画出平行线;定点-由平移的距离确定关键点平移后的对应点的位置;连点-连接对应点。
【详解】作图如下:
平移和旋转都是物体或图形的位置发生变化而形状、大小不变。区别在于,平移时物体沿直线运动,本身方向不发生改变;旋转是物体绕着某一点或轴运动,本身方向发生了变化。
28、如图:
【解析】先用灰色表示出其中的,然后把灰色部分平均分成2份,把其中的一份涂上黄色,黄色部分占总面积的几分之几就表示两个分数的乘积。
五、解答题。
29、2826平方米
【分析】根据圆的周长公式可知游泳池的半径为188.4÷3.14÷2米,再根据圆的面积公式S=πr2计算出面积即可。
【详解】3.14×(188.4÷3.14÷2)2
=3.14×302
=2826(平方米)
答:这个游泳池的占地面积是2826平方米。
本题主要考查圆的周长、面积公式的综合应用,根据圆的周长公式求出圆的半径是解题的关键。
30、60平方厘米
【解析】略
31、2.4米
【分析】设长方形的宽是x米,则长就是3x米,(长+宽)×2=长方形的周长,列方程解答即可。
【详解】解:设长方形的宽是x米,则长就是3x米。
(x+3x)×2=19.2
4x=9.6
x=2.4
答:长方形的宽是2.4米。
牢记长方形周长公式,根据长方形长宽的关系列方程比较简单易懂。
32、
【详解】18÷(18+18+6)
=18÷42
=
答:女生人数占全班人数的.
33、每小时110千米
【解析】首先根据速度×时间=路程,求出货车3小时行驶的路程,再用它加上90,求出两地之间的距离是多少;然后根据路程÷时间=速度,用两地之间的距离除以客车到达乙地用的时间,求出客车的速度是多少即可.
【详解】解:(80×3+90)÷3
=330÷3
=110(千米)
答:客车的速度是每小时行驶110千米.
34、
【分析】先求出跑步的同学的人数,再用这个数除以总人数即可。
【详解】(45-14-25)÷45
=6÷45
=
答:跑步的同学占全班人数的。
本题主要考查“求一个数是(占)另一个数的几分之几”。
相关试卷
这是一份道县2023年六年级数学第二学期期末经典模拟试题含解析,共12页。试卷主要包含了仔细推敲,细心判断,反复思考,慎重选择,用心思考,认真填空,注意审题,用心计算,看清要求,动手操作,灵活运用,解决问题等内容,欢迎下载使用。
这是一份温县2023年六年级数学第二学期期末经典模拟试题含解析,共15页。试卷主要包含了认真审题,细心计算,认真读题,准确填写,反复比较,精心选择,动脑思考,动手操作,应用知识,解决问题等内容,欢迎下载使用。
这是一份上海2023年数学六年级第二学期期末经典试题含解析,共11页。试卷主要包含了认真填一填,是非辨一辨,细心选一选,用心算一算,操作与思考,解决问题等内容,欢迎下载使用。