所属成套资源:(新高考)高考数学二轮复习 考点强化练习(含解析)
新高考数学二轮复习 第1部分 专题6 第3讲 母题突破4 探索性问题(含解析)
展开
这是一份新高考数学二轮复习 第1部分 专题6 第3讲 母题突破4 探索性问题(含解析),共7页。试卷主要包含了已知椭圆G,已知椭圆E等内容,欢迎下载使用。
(1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(m,3),m)),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.
2思路分析
❶假设四边形OAPB能为平行四边形
↓
❷线段AB与线段OP互相平分
↓
❸计算此时直线l的斜率
↓
❹下结论
(1)证明 设直线l:y=kx+b(k≠0,b≠0),
A(x1,y1),B(x2,y2),M(xM,yM).
将y=kx+b代入9x2+y2=m2得
(k2+9)x2+2kbx+b2-m2=0,
故xM=eq \f(x1+x2,2)=eq \f(-kb,k2+9),yM=kxM+b=eq \f(9b,k2+9).
于是直线OM的斜率kOM=eq \f(yM,xM)=-eq \f(9,k),即kOM·k=-9.
所以直线OM的斜率与l的斜率的乘积为定值.
(2)解 四边形OAPB能为平行四边形.
因为直线l过点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(m,3),m)),所以l不过原点且与C有两个交点的充要条件是k>0,k≠3.
由(1)得OM的方程为y=-eq \f(9,k)x.
设点P的横坐标为xP,
由eq \b\lc\{\rc\ (\a\vs4\al\c1(y=-\f(9,k)x,,9x2+y2=m2))得xeq \\al(2,P)=eq \f(k2m2,9k2+81),即xP=eq \f(±km,3\r(k2+9)).
将点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(m,3),m))的坐标代入直线l的方程得b=eq \f(m3-k,3),
因此xM=eq \f(kk-3m,3k2+9).
四边形OAPB为平行四边形,当且仅当线段AB与线段OP互相平分,即xP=2xM.
于是eq \f(±km,3\r(k2+9))=2×eq \f(kk-3m,3k2+9),
解得k1=4-eq \r(7),k2=4+eq \r(7).
因为ki>0,ki≠3,i=1,2,所以当直线l的斜率为4-eq \r(7)或4+eq \r(7)时,四边形OAPB为平行四边形.
[子题1] 已知椭圆C:eq \f(x2,4)+y2=1的左、右焦点分别为F1,F2,左、右顶点分别为A1,A2.
(1)若M为C上任意一点,求|MF1|·|MF2|的最大值;
(2)椭圆C上是否存在点P(异于点A1,A2),使得直线PA1,PA2与直线x=4分别交于点E,F,且|EF|=1?若存在,求出点P的坐标;若不存在,请说明理由.
解 (1)由椭圆的定义可知|MF1|+|MF2|=4,
∴|MF1|·|MF2|≤eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(|MF1|+|MF2|,2)))2=4,
当且仅当|MF1|=|MF2|=2时等号成立,
∴|MF1|·|MF2|的最大值为4.
(2)假设存在满足题意的点P.
不妨设P(x0,y0)(y0>0),则-2
相关试卷
这是一份新高考数学二轮复习考点突破讲义 第1部分 专题突破 专题6 第4讲 母题突破4 探索性问题(含解析),共8页。
这是一份新高考数学二轮复习考点突破讲义 第1部分 专题突破 专题6 第4讲 母题突破3 定值问题(含解析),共8页。
这是一份新高考数学二轮复习考点突破讲义 第1部分 专题突破 专题6 第4讲 母题突破2 定点问题(含解析),共7页。