重庆市江津中学等七校2022-2023学年高一下学期期末联考数学试题
展开
这是一份重庆市江津中学等七校2022-2023学年高一下学期期末联考数学试题,共5页。试卷主要包含了考试结束后,将答题卷交回等内容,欢迎下载使用。
2022—2023学年度第二学期期末七校联考高一数学试题命题学校:重庆市铜梁中学 命题人:李 超 安 雯 审题人:张春平本试卷分第I卷(选择题)和第II卷(非选择题)两部分。满分150分,考试时间120分钟。 注意事项: 1.答题前,务必将自己的姓名、准考证号等填写在答题卡规定的位置上。2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑。3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。4.考试结束后,将答题卷交回。第I卷(选择题 共60分)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(原创)复数的虚部为( )A. B. C. D.2.(原创)已知是两条不同的直线,是两个不同的平面,则下列判断错误的是( )A.若,,,,,则;B.若,,则;C.若,,则;D.若,,,,则.3.(改编)如果一组数据的中位数比平均数小很多,下面叙述一定错误的是( )A.数据中可能有异常值; B.数据中众数可能和中位数相同;C.数据中可能有极端大的值; D.这组数据是近似对称的.4.(原创)在中,点为的重心,则( )A. B. C. D. 5.(原创)将函数图象上每个点的纵坐标不变,横坐标缩短为原来的倍,再将得到的图象向左平移个单位长度后得到函数的图象, 则下列关于函数的说法中错误的是( )A.最小正周期为 B.对称中心为C.一条对称轴为 D.在上单调递增6.(改编)已知圆台上、下底面半径分别为1,2,侧面积为6,则这个圆台的体积为( )A. B. C. D. 7.(原创)如图是一个正方体的展开图,如果将它还原为正方体,那么直线AB,CD所成角为( )A.0 B. C. D.8.(改编)如图,已知棱长为1的正方体中,下列命题正确的是( )A.正方体外接球的半径为;B.点在线段上运动,则四面体的体积不变;C.与所有12条棱都相切的球的体积为;D.是正方体的内切球的球面上任意一点,则长的最小值是.二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.(改编)2022年2月28日,国家统计局发布了我国2021年国民经济和社会发展统计公报,在以习近平同志为核心的党中央坚强领导下,各地区各部门沉着应对百年变局和世纪疫情,构建新发展格局,实现了“十四五”良好开局.2021年,全国居民人均可支配收入和消费支出均较上一年有所增长,结合如下统计图表,下列说法中正确的是( )A.2017-2021年全国居民人均可支配收入逐年递增 B.2021年全国居民人均消费支出24100元C.2020年全国居民人均可支配收入较前一年下降D.2021年全国居民人均消费支出构成中食品烟酒和居住占比超过60%10.(原创)下列选项正确的是( )A. B.C. D.11.(原创)已知复数,,则( )A. B.若,则的最大值为2.C. D.在复平面内对应的点在第二象限12.(改编)已知函数的部分图象如图所示,该图象与轴的交点坐标是,若的图象关于点对称,且在区间上单调递减,则的值可以是( )A.5 B.7 C.9 D.11第II卷(非选择题 共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案写在答题卡相应位置上)13.(原创)某眼科医院为了了解高中学生的视力情况,利用分层抽样的方法从某高中三个年级中抽取了45人进行问卷调查,其中高一年级抽取了12人,高二年级抽取了15人,且高三年级共有学生540人,则该高中三个年级的学生总数为 人.14.(原创)已知,,,则 .15.(原创)已知向量,并且,则实数的取值范围为 . 16.(改编)已知△ABC的内角所对的边分别,角.若是的平分线,交于,且,则的最小值为 .四、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.)17.(原创)(本小题满分10分)已知向量与的夹角为,,.(1)求在上的投影向量的模;(2)求与的夹角的余弦值. 18.(原创)(本小题满分12分)从某校高一学生中抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图: (1)求频率分布直方图中的值;(2)假设同一组中的每个数据可用该组区间的中点代替,计算样本中的100名学生该周课外阅读时间的平均数;(3)求出样本中的100名学生该周课外阅读时间的第60百分位数. 19.(改编)(本小题满分12分)如图,在四棱锥中,侧面底面,侧面是边长为1的等边三角形,底面是正方形,是侧棱上的点,是底面对角线上的点,且,.(1)求证:;(2)求证:平面;(3)求点到平面的距离. 20.(改编)(本小题满分12分)在中,角A,B,C的对边分别为a,b,c,已知.(1)证明:;(2)若,,求的周长和面积. 21.(原创)(本小题满分12分)已知函数.(1)求函数在的值域;(2)若关于的方程在区间上有两个不相等的实数根,求实数的取值范围. 22.(改编)(本小题满分12分)如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,,E, F分别是AB,CD的中点.(1)求证:;(2)当直线与平面PCD所成角的正弦值最大时,求此时二面角的余弦值.
相关试卷
这是一份2022-2023学年重庆市江津中学校等七校高二下学期期末联考数学试题含答案,共16页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份重庆市江津中学等七校2022-2023学年高二下学期期末联考数学试卷(含答案),共14页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年重庆市铜梁中学、江津中学等七校联考高一(下)期末数学试卷(含解析),共19页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。