新高考数学二轮复习 第1部分 专题2 第1讲 平面向量(含解析)课件PPT
展开
这是一份新高考数学二轮复习 第1部分 专题2 第1讲 平面向量(含解析)课件PPT,共60页。PPT课件主要包含了考情分析,内容索引,核心提炼,1+∞,专题强化练,∴m+n=2,所以选项C正确,所以选项D正确等内容,欢迎下载使用。
KAO QING FEN XI
1.平面向量是高考的热点和重点,命题突出向量的基本运算与工具性, 在解答题中常与三角函数、直线和圆锥曲线的位置关系问题相结合, 主要以条件的形式出现,涉及向量共线、数量积等.2.常以选择题、填空题形式考查平面向量的基本运算,中低等难度; 平面向量在解答题中一般为中等难度.
考点一 平面向量的线性运算
1.平面向量加减法求解的关键是:对平面向量加法抓住“共起点”或“首尾相连”.对平面向量减法应抓住“共起点,连两终点,指向被减向量的终点”,再观察图形对向量进行等价转化,即可快速得到结果.2.在一般向量的线性运算中,只要把其中的向量当作一个字母看待即可,其运算方法类似于代数中合并同类项的运算,在计算时可以进行类比.
即λ+μ的取值范围是(1,+∞).
在平面向量的化简或运算中,要根据平面向量基本定理恰当地选取基底,变形要有方向,不能盲目转化.
解析 设扇形的半径为1,以OB所在直线为x轴,O为坐标原点建立平面直角坐标系(图略),
故当θ=0时,g(θ)取得最大值为3,
故x+3y的取值范围为[1,3].
考点二 平面向量的数量积
例2 (1)(2020·全国Ⅲ)已知向量a,b满足|a|=5,|b|=6,a·b=-6,则cs〈a,a+b〉等于
解析 ∵|a+b|2=(a+b)2=a2+2a·b+b2=25-12+36=49,∴|a+b|=7,
解析 如图,连接CO,∵点C是弧AB的中点,∴CO⊥AB,
解析 以A为坐标原点,AB,AD所在直线分别为x轴,y轴,建立如图所示的平面直角坐标系,则A(0,0),B(2,0),C(1,2),D(0,2),
两个向量的夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量的夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不仅要求其数量积小于零,还要求不能反向共线.
跟踪演练2 (1)(2019·全国Ⅰ)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为
解析 方法一 设a与b的夹角为θ,因为(a-b)⊥b,所以(a-b)·b=a·b-|b|2=0,又因为|a|=2|b|,所以2|b|2cs θ-|b|2=0,
解析 如图,取A为坐标原点,AB所在直线为x轴建立平面直角坐标系,
由图可知,当点C在OD的反向延长线与圆O的交点处时,
2.(2020·广州模拟)加强体育锻炼是青少年生活学习中非常重要的组成部分,某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为 ,每只胳膊的拉力大小均为400 N,则该学生的体重(单位:kg)约为(参考数据:取重力加速度大小为g=10 m/s2, ≈1.732)A.63 B.69 C.75 D.81
解析 设该学生的体重为m,重力为G,两臂的合力为F′,则|G|=|F′|,
3.已知向量a=(1,2),b=(2,-2),c=(λ,-1),若c∥(2a+b),则λ等于
解析 ∵a=(1,2),b=(2,-2),∴2a+b=(4,2),又c=(λ,-1),c∥(2a+b),∴2λ+4=0,解得λ=-2,故选A.
A.0 B.1 C.2 D.3
∵M,O,N三点共线,
∴△ABC为直角三角形.故选C.
解析 设△ABC的外接圆的圆心为O,
解析 方法一 如图,连接DA,以D点为原点,BC所在直线为x轴,DA所在直线为y轴,建立如图所示的平面直角坐标系.设内切圆的半径为r,则圆心为坐标(0,r),根据三角形面积公式,
设M(cs θ,1+sin θ),θ∈[0,2π),
由题意知,x≥0,y≥0,
当且仅当2x=y=1时取等号.
二、多项选择题10.(2020·长沙模拟)已知a,b是单位向量,且a+b=(1,-1),则A.|a+b|=2B.a与b垂直C.a与a-b的夹角为D.|a-b|=1
因为a,b是单位向量,所以|a|2+|b|2+2a·b=1+1+2a·b=2,得a·b=0,a与b垂直,故B正确;
11.设向量a=(k,2),b=(1,-1),则下列叙述错误的是A.若k
相关课件
这是一份新高考数学二轮复习 第1部分 专题6 第3讲 母题突破2 定点问题(含解析)课件PPT,共32页。PPT课件主要包含了内容索引,母题突破2,专题强化练,母题突破2定点问题,思路分析,跟踪演练等内容,欢迎下载使用。
这是一份新高考数学二轮复习 第1部分 专题5 第1讲 统计与统计案例(含解析)课件PPT,共60页。PPT课件主要包含了考情分析,内容索引,考点一统计图表,核心提炼,考点二回归分析,样本数据的相关系数,考点三独立性检验,专题强化练,①②③,根据公式可求得等内容,欢迎下载使用。
这是一份新高考数学二轮复习 第1部分 专题3 第2讲 数列求和及其综合应用(含解析)课件PPT,共60页。PPT课件主要包含了考情分析,内容索引,考点一数列求和,核心提炼,专题强化练,化简得a1d=d2,填空题等内容,欢迎下载使用。