开学活动
搜索
    上传资料 赚现金

    (新高考)高考数学一轮复习过关练考点09 导数的综合应用(含解析)

    (新高考)高考数学一轮复习过关练考点09 导数的综合应用(含解析)第1页
    (新高考)高考数学一轮复习过关练考点09 导数的综合应用(含解析)第2页
    (新高考)高考数学一轮复习过关练考点09 导数的综合应用(含解析)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (新高考)高考数学一轮复习过关练考点09 导数的综合应用(含解析)

    展开

    这是一份(新高考)高考数学一轮复习过关练考点09 导数的综合应用(含解析),共32页。试卷主要包含了通过导数研究函数的零点等内容,欢迎下载使用。
    考点09 导数的综合应用
    考纲要求



    1、 运用导数研究函数的零点问题
    2、 运用导数研究函数的恒成立问题
    3、 运用导数研究实际应用题
    4、 运用导数研究定义型问题

    近三年高考情况分析



    近几年各地对导数的考查逐步增加,选择、填空以及大题均有考查,难度也逐步增加,对于压轴题重点考查1、通过导数研究函数的零点、恒成立问题等问题。
    2、利用导数研究函数的最值是函数模型的一个重要模块,导数是求函数的一种重要工具,对函数的解析式没有特殊的要求,无论解析式是复杂或者简单,与三角函数还是与其他模块的结合都可以运用导数求解,常考的知识点可以与立体几何、三角函数、解析几何等模块结合,这是近几年江苏高考命题的趋势


    考点总结




    在高考复习中要注意以下几点:
    1、 注意函数零点的判断,以及函数恒成立问题的解题策略。
    2、 导数的实际应用关键是构建函数模型。第一步:弄清问题,选取自变量,确立函数的取值范围;第二步:构建函数,将实际问题转化为数学问题;第三步:解决构建数学问题;第四步:将解出的结果回归实际问题,对结果进行取舍。在建立函数模型时,要注意函数的定义域,要积累常见函数模型如分式函数、三次函数、三角函数等知识点模块的结合。
    三年高考真题





    1、【2019年高考天津理数】已知,设函数若关于的不等式在上恒成立,则的取值范围为
    A. B.
    C. D.
    【答案】C
    【解析】当时,恒成立;
    当时,恒成立,
    令,


    当,即时取等号,
    ∴,则.
    当时,,即恒成立,
    令,则,
    当时,,函数单调递增,
    当时,,函数单调递减,
    则时,取得最小值,
    ∴,
    综上可知,的取值范围是.
    故选C.
    2、【2019年高考浙江】已知,函数.若函数恰有3个零点,则
    A.a0
    【答案】C
    【解析】当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b=0,得x,
    则y=f(x)﹣ax﹣b最多有一个零点;
    当x≥0时,y=f(x)﹣ax﹣bx3(a+1)x2+ax﹣ax﹣bx3(a+1)x2﹣b,

    当a+1≤0,即a≤﹣1时,y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上单调递增,
    则y=f(x)﹣ax﹣b最多有一个零点,不合题意;
    当a+1>0,即a>﹣1时,令y′>0得x∈(a+1,+∞),此时函数单调递增,
    令y′<0得x∈[0,a+1),此时函数单调递减,则函数最多有2个零点.
    根据题意,函数y=f(x)﹣ax﹣b恰有3个零点⇔函数y=f(x)﹣ax﹣b在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,
    如图:

    ∴0且,
    解得b<0,1﹣a>0,b(a+1)3,
    则a>–1,b0).问为多少米时,桥墩CD与EF的总造价最低?
    【答案】(1)120米(2)米
    【解析】(1)由题意得

    (2)设总造价为万元,,设,

    (0舍去)
    当时,;当时,,因此当时,取最小值,
    答:当米时,桥墩CD与EF的总造价最低.
    4、【2020年江苏卷】.已知关于x的函数与在区间D上恒有.
    (1)若,求h(x)的表达式;
    (2)若,求k的取值范围;
    (3)若求证:.
    【解析】(1)由题设有对任意的恒成立.
    令,则,所以.
    因此即对任意的恒成立,
    所以,因此.
    故.
    (2)令,.
    又.
    若,则在上递增,在上递减,则,即,不符合题意.
    当时,,符合题意.
    当时, 在上递减,在上递增,则,
    即,符合题意.
    综上所述,.

    当,即时,在为增函数,
    因为,
    故存在,使,不符合题意.
    当,即时,,符合题意.
    当,即时,则需,解得.
    综上所述,的取值范围是.
    (3)因为对任意恒成立,
    对任意恒成立,
    等价于对任意恒成立.
    故对任意恒成立
    令,
    当,,
    此时,
    当,,
    但对任意的恒成立.
    等价于对任意的恒成立.
    的两根为,
    则,
    所以.
    令,则.
    构造函数,,
    所以时,,递减,.
    所以,即.
    5、【2020年全国3卷】设函数,曲线在点(,f())处的切线与y轴垂直.
    (1)求b.
    (2)若有一个绝对值不大于1的零点,证明:所有零点的绝对值都不大于1.
    【解析】(1)因为,
    由题意,,即
    则;
    (2)由(1)可得,

    令,得或;令,得,
    所以在上单调递减,在,上单调递增,
    且,
    若所有零点中存在一个绝对值大于1零点,则或,
    即或.
    当时,,
    又,
    由零点存在性定理知在上存在唯一一个零点,
    即在上存在唯一一个零点,在上不存在零点,
    此时不存在绝对值不大于1的零点,与题设矛盾;
    当时,,
    又,
    由零点存在性定理知在上存在唯一一个零点,
    即在上存在唯一一个零点,在上不存在零点,
    此时不存在绝对值不大于1的零点,与题设矛盾;
    综上,所有零点的绝对值都不大于1.
    6、【2020年天津卷】.已知函数,为的导函数.
    (Ⅰ)当时,
    (i)求曲线在点处的切线方程;
    (ii)求函数的单调区间和极值;
    (Ⅱ)当时,求证:对任意的,且,有.
    【解析】(Ⅰ) (i) 当k=6时,,.可得,,
    所以曲线在点处的切线方程为,即.
    (ii) 依题意,.
    从而可得,
    整理可得:,
    令,解得.
    当x变化时,的变化情况如下表:









    单调递减
    极小值
    单调递增


    所以,函数g(x)的单调递减区间为(0,1),单调递增区间为(1,+∞);
    g(x)的极小值为g(1)=1,无极大值.
    (Ⅱ)证明:由,得.
    对任意的,且,令,则



    . ①
    令.
    当x>1时,,
    由此可得在单调递增,所以当t>1时,,即.
    因为,,,
    所以
    . ②
    由(Ⅰ)(ii)可知,当时,,即,
    故 ③
    由①②③可得.
    所以,当时,任意的,且,有
    .
    7、【2020年浙江卷】.已知,函数,其中e=2.71828…为自然对数的底数.
    (Ⅰ)证明:函数在上有唯一零点;
    (Ⅱ)记x0为函数在上的零点,证明:
    (ⅰ);
    (ⅱ).
    【解析】(I)在上单调递增,

    所以由零点存在定理得在上有唯一零点;
    (II)(i),


    一方面: ,
    在单调递增,,

    另一方面:,
    所以当时,成立,
    因此只需证明当时,
    因为
    当时,,当时,,
    所以,
    在单调递减,,,
    综上,.
    (ii),
    ,,
    ,因为,所以,

    只需证明,
    即只需证明,
    令,
    则,
    ,即成立,
    因此.
    8、【2019年高考全国Ⅰ卷理数】已知函数,为的导数.证明:
    (1)在区间存在唯一极大值点;
    (2)有且仅有2个零点.
    【解析】(1)设,则,.
    当时,单调递减,而,可得在有唯一零点,
    设为.
    则当时,;当时,.
    所以在单调递增,在单调递减,故在存在唯一极大值点,即在存在唯一极大值点.
    (2)的定义域为.
    (i)当时,由(1)知,在单调递增,而,所以当时,,故在单调递减,又,从而是在的唯一零点.
    (ii)当时,由(1)知,在单调递增,在单调递减,而,,所以存在,使得,且当时,;当时,.故在单调递增,在单调递减.
    又,,所以当时,.从而,在没有零点.
    (iii)当时,,所以在单调递减.而,,所以在有唯一零点.
    (iv)当时,,所以0,f(2)﹣2ln2﹣2= ln2﹣1

    相关试卷

    (新高考)高考数学一轮复习过关练考点08 利用导数研究函数的性质(含解析):

    这是一份(新高考)高考数学一轮复习过关练考点08 利用导数研究函数的性质(含解析),共25页。

    (新高考)高考数学一轮复习过关练考点07 导数的运算及几何意义(含解析):

    这是一份(新高考)高考数学一轮复习过关练考点07 导数的运算及几何意义(含解析),共16页。

    高考数学一轮复习考点规范练16导数的综合应用含解析新人教A版文:

    这是一份高考数学一轮复习考点规范练16导数的综合应用含解析新人教A版文,共9页。试卷主要包含了已知函数f=ex+k,k∈Z,设函数f=ex,已知函数f=ln x-x-1,已知函数f=x3-kx+k2,已知函数f=x等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map