(新高考)高考数学一轮复习素养练习 第5章 第7讲 高效演练分层突破 (含解析)
展开[基础题组练]
1.在相距2 km的A,B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则A,C两点之间的距离为( )
A. km B. km
C. km D.2 km
解析:选A.如图,在△ABC中,由已知可得∠ACB=45°,所以=,
所以AC=2×=(km).
2.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于( )
A.5 B.15
C.5 D.15
解析:选D.在△BCD中,∠CBD=180°-15°-30°=135°.
由正弦定理得=,
所以BC=15.
在Rt△ABC中,
AB=BCtan∠ACB=15×=15.
3.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是( )
A.10海里 B.10海里
C.20海里 D.20海里
解析:选A.如图所示,易知,在△ABC中,AB=20,∠CAB=30°,∠ACB=45°,
根据正弦定理得=,
解得BC=10(海里).
4.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60 m,则河流的宽度BC等于( )
A.240(-1) m B.180(-1) m
C.120(-1) m D.30(+1) m
解析:选C.因为tan 15°=tan(60°-45°)==2-,所以BC=60tan 60°-60tan 15°=120(-1)(m).
5.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,C是该小区的一个出入口,且小区里有一条平行于AO的小路CD. 已知某人从O沿OD走到D用了2分钟,从D沿着DC走到C用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径的长度为( )
A.50 米 B.50 米
C.50米 D.50米
解析:选B.设该扇形的半径为r米,连接CO.
由题意,得CD=150(米),OD=100(米),∠CDO=60°,
在△CDO中,CD2+OD2-2CD·OD·cos 60°=OC2,
即1502+1002-2×150×100×=r2,
解得r=50 .
6.海上有A,B两个小岛相距10 n mile,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,那么B岛和C岛间的距离是________ n mile.
解析:如图,在△ABC中,AB=10,A=60°,B=75°,C=45°,
由正弦定理,得=,
所以BC===5(n mile).
答案:5
7.一船自西向东匀速航行,上午10时到达灯塔P的南偏西75°,距灯塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则此船航行的速度为________海里/小时.
解析:如图,由题意知∠MPN=75°+45°=120°,∠PNM=45°.
在△PMN中,=,
所以MN=68×=34(海里).
又由M到N所用的时间为14-10=4(小时),
所以此船的航行速度v==(海里/小时).
答案:
8.如图,在△ABC中,已知M为边BC上一点,=4,∠AMC=,AM=2,△AMC的面积为3,则CM=________;cos∠BAC=________.
解析:因为在△AMC中,∠AMC=,AM=2,△AMC的面积为3,则有3=AM·CM·sin∠AMC=×2×CM×,解得CM=6.
因为=4,所以BM=2,BC=8,因为∠AMB=π-∠AMC=,所以由余弦定理可得
AB=
= =2,
AC=
= =2,
所以cos∠BAC===-.
答案:6 -
9.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.
(1)求cos∠ADB;
(2)若DC=2,求BC.
解:(1)在△ABD中,由正弦定理得=.由题设知,=,
所以sin∠ADB=.由题设知,∠ADB<90°,
所以cos∠ADB==.
(2)由题设及(1)知,
cos∠BDC=sin∠ADB=.
在△BCD中,由余弦定理得
BC2=BD2+DC2-2·BD·DC·cos∠BDC
=25+8-2×5×2×=25.所以BC=5.
10.在△ABC中,a,b,c分别是角A,B,C的对边,(2a-c)·cos B-bcos C=0.
(1)求角B的大小;
(2)设函数f(x)=2sin xcos xcos B-cos 2x,求函数f(x)的最大值及当f(x)取得最大值时x的值.
解:(1)因为(2a-c)cos B-bcos C=0,
所以2acos B-ccos B-bcos C=0,
由正弦定理得2sin Acos B-sin CcosB-cos Csin B=0,
即2sin Acos B-sin(C+B)=0,
又C+B=π-A,所以sin(C+B)=sin A.
所以sin A(2cos B-1)=0.
在△ABC中,sin A≠0,
所以cos B=,又B∈(0,π),所以B=.
(2)因为B=,所以f(x)=sin 2x-cos 2x=sin,
令2x-=2kπ+(k∈Z),得x=kπ+(k∈Z),
即当x=kπ+(k∈Z)时,f(x)取得最大值1.
[综合题组练]
1.(2020·安徽宣城二模)在△ABC中,角A,B,C成等差数列.且对边分别为a,b,c,若·=20,b=7,则△ABC的内切圆的半径为( )
A. B.
C.2 D.3
解析:选A.因为角A,B,C成等差数列,所以2B=A+C,又A+B+C=π,所以B=.
因为·=accos B=20,所以ac=40.所以S△ABC=acsin B=10.
由余弦定理得cos B==
=,
所以a+c=13,
设△ABC的内切圆的半径为r,则S△ABC=(a+b+c)r=10r,所以10=10r,解得r=,故选A.
2.如图所示,一座建筑物AB的高为(30-10)m,在该建筑物的正东方向有一座通信塔CD.在它们之间的地面上的点M(B,M,D三点共线)处测得楼顶A,塔顶C的仰角分别是15°和60°,在楼顶A处测得塔顶C的仰角为30°,则通信塔CD的高为( )
A.30 m B.60 m
C.30 m D.40 m
解析:选B.在Rt△ABM中,AM====20(m).过点A作AN⊥CD于点N,如图所示.易知∠MAN=∠AMB=15°,所以∠MAC=30°+15°=45°.又∠AMC=180°-15°-60°=105°,所以∠ACM=30°.在△AMC中,由正弦定理得=,解得MC=40(m).在Rt△CMD中,CD=40×sin 60°=60(m),故通信塔CD的高为60 m.
3.(创新型)(2020·河北衡水三模)在等腰△ABC中,∠BAC=120°,AD为边BC上的高,点E满足=3,若AB=m,则BE的长为________.
解析:因为△ABC是等腰三角形,∠BAC=120°,AD⊥BC,所以∠ABC=30°,∠BAD=60°,又因为AB=m,所以AD= m,由=3 ,得AE=m,在△ABE中,AB=m,AE=m,∠BAE=60°,
所以由余弦定理,得BE2=AB2+AE2-2AB·AE ·cos∠BAE=m2+m2-2m×m×cos 60°=m2,所以BE=m.
答案:m
4.已知△ABC中,AC=,BC=,△ABC的面积为,若线段BA的延长线上存在点D,使∠BDC=,则CD=________.
解析:因为AC=,BC=,△ABC的面积为=AC·BC·sin∠ACB=×××sin∠ACB,
所以sin∠ACB=,
所以∠ACB=或,
若∠ACB=,∠BDC=<∠BAC,可得∠BAC+∠ACB>+>π,与三角形内角和定理矛盾,所以∠ACB=,所以在△ABC中,由余弦定理可得
AB==
=,
所以AB=AC,所以∠B=,
所以在△BCD中,由正弦定理可得CD===.
答案:
5.(应用型)如图所示,经过村庄A有两条夹角60°的公路AB,AC,根据规划拟在两条公路之间的区域建一工厂P,分别在两条公路边上建两个仓库M,N(异于村庄A),要求PM=PN=MN=2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远)?
解:设∠AMN=θ,
在△AMN中,=.
因为MN=2,
所以AM=sin(120°-θ).
在△APM中,cos∠AMP=cos(60°+θ).
AP2=AM2+MP2-2AM·MP·cos∠AMP=
sin2(120°-θ)+4-2×2×sin(120°-θ)·cos(60°+θ)=sin2(θ+60°)-sin(θ+60°)·cos(θ+60°)+4
=[1-cos(2θ+120°)]-sin(2θ+120°)+4
=-[sin(2θ+120°)+cos(2θ+120°)]+
=-sin(2θ+150°),θ∈(0°,120°).
当且仅当2θ+150°=270°,即θ=60°时,AP2取得最大值12,即AP取得最大值2.所以设计∠AMN=60°时,工厂产生的噪声对居民的影响最小.
(新高考)高考数学一轮复习素养练习 第10章 第7讲 高效演练分层突破 (含解析): 这是一份(新高考)高考数学一轮复习素养练习 第10章 第7讲 高效演练分层突破 (含解析),共7页。
(新高考)高考数学一轮复习素养练习 第9章 第7讲 高效演练分层突破 (含解析): 这是一份(新高考)高考数学一轮复习素养练习 第9章 第7讲 高效演练分层突破 (含解析),共8页。
(新高考)高考数学一轮复习素养练习 第7章 第5讲 高效演练分层突破 (含解析): 这是一份(新高考)高考数学一轮复习素养练习 第7章 第5讲 高效演练分层突破 (含解析),共7页。