


所属成套资源:(新高考)高考数学一轮复习素养练习(含解析)
(新高考)高考数学一轮复习素养练习 第6章 第3讲 平面向量的数量积及应用举例 (含解析)
展开
这是一份(新高考)高考数学一轮复习素养练习 第6章 第3讲 平面向量的数量积及应用举例 (含解析),共17页。试卷主要包含了知识梳理,教材衍化等内容,欢迎下载使用。
第3讲 平面向量的数量积及应用举例
一、知识梳理
1.向量的夹角
(1)定义:已知两个非零向量a和b,作=a,=b,则∠AOB=θ叫做向量a与b的夹角.
(2)范围:向量夹角θ的范围是0°≤θ≤180°.
[注意] 当a与b同向时,θ=0°;a与b反向时,θ=180°;a与b垂直时,θ=90°.
2.平面向量的数量积
定义
设两个非零向量a,b的夹角为θ,则数量|a||b|·cos_θ叫做a与b的数量积,记作a·b
投影
|a|cos_θ叫做向量a在b方向上的投影,
|b|cos_θ叫做向量b在a方向上的投影
几何意义
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos_θ的乘积
[注意] 投影和两向量的数量积都是数量,不是向量.
3.向量数量积的运算律
(1)a·b=b·a.
(2)(λa)·b=λ(a·b)=a·(λb).
(3)(a+b)·c=a·c+b·c.
4.平面向量数量积的坐标运算及有关结论
已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ,a·b=x1x2+y1y2.
结论
几何表示
坐标表示
模
|a|=
|a|=
夹角
cos θ=
cos θ=
a⊥b的充要条件
a·b=0
x1x2+y1y2=0
常用结论
(1)两向量a与b为锐角⇔a·b>0且a与b不共线.
(2)两向量a与b为钝角⇔a·b<0且a与b不共线.
(3)(a±b)2=a2±2a·b+b2.
(4)(a+b)·(a-b)=a2-b2.
(5)a与b同向时,a·b=|a||b|.
(6)a与b反向时,a·b=-|a||b|.
二、教材衍化
已知a·b=-12,|a|=4,a和b的夹角为135°,则|b|为( )
A.12 B.6
C.3 D.3
解析:选B.a·b=|a|·|b|cos 135°=-12,所以|b|==6.
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)向量在另一个向量方向上的投影为数量,而不是向量.( )
(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )
(3)由a·b=0可得a=0或b=0.( )
(4)(a·b)c=a(b·c).( )
(5)两个向量的夹角的范围是.( )
(6)若a·b>0,则a和b的夹角为锐角;若a·b
相关试卷
这是一份新高考数学一轮复习课时讲练 第5章 第3讲 平面向量的数量积及应用举例 (含解析),共26页。试卷主要包含了向量的夹角,向量数量积的运算律,平面向量数量积的有关结论等内容,欢迎下载使用。
这是一份(新高考)高考数学一轮复习素养练习 第9章 第3讲 圆的方程 (含解析),共14页。试卷主要包含了知识梳理,教材衍化等内容,欢迎下载使用。
这是一份(新高考)高考数学一轮复习素养练习 第5章 第7讲 解三角形应用举例及综合问题 (含解析),共20页。试卷主要包含了知识梳理,教材衍化等内容,欢迎下载使用。
