高考数学二轮专题学与练 01 集合与简单逻辑(考点解读)(含解析)
展开
这是一份高考数学二轮专题学与练 01 集合与简单逻辑(考点解读)(含解析),共13页。试卷主要包含了集合的概念、运算和性质,四种命题,充要条件,全称量词与存在量词等内容,欢迎下载使用。
专题1 集合与简单逻辑
集合知识一般以一个选择题的形式出现,其中以集合知识为载体,集合与不等式、解析几何知识相结合是考查的重点,难度为中、低档;对常用逻辑用语的考查一般以一个选择题或一个填空题的形式出现,以集合、函数、数列、三角函数、不等式及立体几何中的线面关系为载体,考查充要条件或命题的真假判断等,难度一般不大.
1.集合的概念、运算和性质
(1)集合的表示法:列举法,描述法,图示法.
(2)集合的运算:
①交集:A∩B={x|x∈A,且x∈B}.
②并集:A∪B={x|x∈A,或x∈B}.
③补集:∁UA={x|x∈U,且x∉A}.
(3)集合的关系:子集,真子集,集合相等.
(4)需要特别注意的运算性质和结论.
①A∪∅=A,A∩∅=∅;
②A∩(∁UA)=∅,A∪(∁UA)=U.
A∩B=A⇔A⊆B,A∪B=A⇔B⊆A
2.四种命题
(1)用p、q表示一个命题的条件和结论,¬p和¬q分别表示条件和结论的否定,那么若原命题:若p则q;则逆命题:若q则p;否命题:若¬p则¬q;逆否命题:若¬q则¬p.
(2)四种命题的真假关系
原命题与其逆否命题同真同真;原命题的逆命题与原命题的否命题同真同假.
3.充要条件
(1)若p⇒q,则p是q成立的充分条件,q是p成立的必要条件.
(2)若p⇒q且q⇒/ p,则p是q的充分不必要条件,q是p的必要不充分条件.
(3)若p⇔q,则p是q的充分必要条件.
4.简单的逻辑联结词“且”、“或”、“非”
用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作“p∧q”;
用逻辑联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作“p∨q”;
对一个命题p全盘否定,就得到一个新命题,记作“¬p”.
5.全称量词与存在量词
(1)全称命题p:∀x∈M,p(x).
它的否定¬p:∃x0∈M,¬p(x0).
(2)特称命题(存在性命题)p:∃x0∈M,p(x0).
它的否定¬p:∀x∈M,¬p(x).
高频考点一 集合的概念及运算
例1、(1)[2019·全国卷Ⅲ]已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( )
A.{-1,0,1} B.{0,1}
C.{-1,1} D.{0,1,2}
(2)[2019·全国卷Ⅰ]已知集合M={x|-4
相关试卷
这是一份高考数学二轮复习 专题01 集合与常用逻辑用语(含解析),共16页。试卷主要包含了【2022年全国乙卷】集合,则,【2022年浙江】设集合,则等内容,欢迎下载使用。
这是一份高考数学二轮专题学与练 17 概率与统计(考点解读)(含解析),共54页。试卷主要包含了回归分析,独立性检验,古典概型,对立事件,互斥事件与对立事件的关系等内容,欢迎下载使用。
这是一份高考数学二轮专题学与练 14 直线与圆(考点解读)(含解析),共14页。试卷主要包含了直线方程,圆的方程,圆2+2=2的圆心和半径分别是等内容,欢迎下载使用。