高考数学二轮专题学与练 12 空间的平行与垂直(考点解读)(含解析)
展开专题12 空间的平行与垂直
1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;
2.以客观题形式考查有关线面平行、垂直等位置关系的命题真假判断或充要条件判断等.
3.以多面体或旋转体为载体(棱锥、棱柱为主)命制空间线面平行、垂直各种位置关系的证明题或探索性问题,以大题形式呈现.
1.点、线、面的位置关系
(1)平面的基本性质
名称
图形
文字语言
符号语言
公理1
如果一条直线上的两点在一个平面内,那么这条直线在此平面内
⇒l⊂α
公理2
过不在一条直线上的三点有且只有一个平面
若A、B、C三点不共线,则A、B、C在同一平面α内且α是唯一的.
公理3
如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
平面α与β不重合,若P∈α,且P∈β,则α∩β=a,且P∈a
(2)平行公理、等角定理
公理4:若a∥c,b∥c,则a∥b.
等角定理:若OA∥O1A1,OB∥O1B1,则∠AOB=∠A1O1B1或∠AOB+∠A1O1B1=180°.
2.直线、平面的平行与垂直
定理名称
文字语言
图形语言
符号语言
线面平行的判定定理
平面外一条直线与平面内的一条直线平行,则这条直线与此平面平行
⇒a∥α
线面平行的性质定理
一条直线与一个平面平行,则过这条直线的任何一个平面与此平面的交线与该直线平行
a∥α,a⊂β,α∩β=b,⇒a∥b
面面平行的判定定理
如果一个平面内有两条相交的直线都平行于另一个平面,那么这两个平面平行
a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β
面面平行的性质定理
如果两个平行平面同时和第三个平面相交,那么它们的交线平行
α∥β且γ∩α=a且γ∩β=b⇒a∥b
线面垂直的判定定理
一条直线和一个平面内的两条相交直线都垂直,则该直线与此平面垂直
a⊂α,b⊂α,a∩b=A,l⊥a,l⊥b⇒l⊥α
线面垂直的性质定理
垂直于同一平面的两条直线平行
a⊥α,b⊥α⇒a∥b
面面垂直的判定定理
一个平面过另一个平面的垂线,则这两个平面垂直
a⊥α,a⊂β,⇒α⊥β
面面垂直的性质定理
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
α⊥β,b∈β,α∩β=a,b⊥a⇒b⊥α
3.熟练掌握常见几何体(柱、锥、台、球)的几何特征,明确各种几何体的直观图与三视图特征及相关面积体积的计算公式,熟练掌握线线、线面、面面平行与垂直等位置关系的判定与性质定理及公理,熟练进行线线、线面、面面平行与垂直关系的相互转化是解答相关几何题的基础.
【误区警示】
1.应用线面、面面平行与垂直的判定定理、性质定理时,必须按照定理的要求找足条件.
2.作辅助线(面)是立体几何证题中常用技巧,作图时要依据题设条件和待求(证)结论之间的关系结合有关定理作图.注意线线、线面、面面平行与垂直关系的相互转化.
3.若a、b、c代表直线或平面,△代表平行或垂直,在形如⇒b△c的命题中,要切实弄清有哪些是成立的,有哪些是不成立的.例如a、b、c中有两个为平面,一条为直线,命题⇒α∥β是成立的.⇒α∥β是不成立的.
高频考点一 空间中点、线、面的位置
例1.(2019·高考全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则( )
A.BM=EN,且直线BM,EN是相交直线
B.BM≠EN,且直线BM,EN是相交直线
C.BM=EN,且直线BM,EN是异面直线
D.BM≠EN,且直线BM,EN是异面直线
【答案】B
【解析】取CD的中点O,连接ON,EO,因为△ECD为正三角形,所以EO⊥CD,又平面ECD⊥平面ABCD,平面ECD∩平面ABCD=CD,所以EO⊥平面ABCD.设正方形ABCD的边长为2,则EO=,ON=1,所以EN2=EO2+ON2=4,得EN=2.过M作CD的垂线,垂足为P,连接BP,则MP=,CP=,所以BM2=MP2+BP2=()2+()2+22=7,得BM=,所以BM≠EN.连接BD,BE,因为四边形ABCD为正方形,所以N为BD的中点,即EN,MB均在平面BDE内,所以直线BM,EN是相交直线,选B.
【举一反三】已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )
A.若α,β垂直于同一平面,则α与β平行
B.若m,n平行于同一平面,则m与n平行
C.若α,β不平行,则在α内不存在与β平行的直线
D.若m,n不平行,则m与n不可能垂直于同一平面
【解析】对于A,α,β垂直于同一平面,α,β关系不确定,A错;对于B,m,n平行于同一平面,m,n关系不确定,可平行、相交、异面,故B错;对于C,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C错;对于D,若假设m,n垂直于同一平面,则m∥n,其逆否命题即为D选项,故D正确.
【答案】D
【变式探究】已知m,n表示两条不同直线,α表示平面.下列说法正确的是( )
A.若m∥α,n∥α,则m∥n
B.若m⊥α,n⊂α,则m⊥n
C.若m⊥α,m⊥n,则n∥α
D.若m∥α,m⊥n,则n⊥α
【解析】对于选项A,若m∥α,n∥α,则m与n可能相交、平行或异面,A错误;显然选项B正确;对于选项C,若m⊥α,m⊥n,则n⊂α或n∥α,C错误;对于选项D,若m∥α,m⊥n,则n∥α或n⊂α或n与α相交.D错误.故选B.
【答案】B
【举一反三】已知两个平面相互垂直,下列命题中,
①一个平面内已知直线必垂直于另一个平面内的任意一条直线;
②一个平面内已知直线必垂直于另一个平面内的无数条直线;
③一个平面内任意一条直线必垂直于另一个平面;
④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.
其中正确命题个数是( )
A.3 B.2
C.1 D.0
【答案】C
【解析】构造正方体ABCDA1B1C1D1,如图,①,在正方体ABCDA1B1C1D1中,平面ADD1A1⊥平面ABCD,A1D⊂平面ADD1A1,BD⊂平面ABCD,但A1D与BD不垂直,故①错;
②,在正方体ABCDA1B1C1D1中,平面ADD1A1⊥平面ABCD,l是平面ADD1A1内的任意一条直线,l与平面ABCD内同AB平行的所有直线垂直,故②正确;
③,在正方体ABCDA1B1C1D1中,平面ADD1A1⊥平面ABCD,A1D⊂平面ADD1A1,但A1D与平面ABCD不垂直,故③错;
④,在正方体ABCDA1B1C1D1中,平面ADD1A1⊥平面ABCD,且平面ADD1A1∩平面ABCD=AD,过交线AD上的点作交线的垂线l,则l可能与另一平面垂直,也可能与另一平面不垂直,故④错.故选C.
高频考点二 空间中平行的判定与垂直
例2.由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.
(1)证明:A1O∥平面B1CD1;
(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.
【证明】 (1)取B1D1的中点O1,连接CO1,A1O1,
由于ABCDA1B1C1D1为四棱柱,
所以A1O1∥OC,
A1O1=OC,
因此四边形A1OCO1为平行四边形,
所以A1O∥O1C.
又O1C⊂平面B1CD1,A1O⊄平面B1CD1,
所以A1O∥平面B1CD1.
(2)因为AC⊥BD,E,M分别为AD和OD的中点,
所以EM⊥BD.
又A1E⊥平面ABCD,BD⊂平面ABCD,
所以A1E⊥BD.
因为B1D1∥BD,
所以EM⊥B1D1,A1E⊥B1D1.
又A1E,EM⊂平面A1EM,A1E∩EM=E,
所以B1D1⊥平面A1EM.
又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.
【变式探究】如图,在四棱锥PABCD中,平面PAB⊥平面ABCD,AD∥BC,PA⊥AB,CD⊥AD,BC=CD=AD,E为AD的中点.
(1)求证:PA⊥CD.
(2)求证:平面PBD⊥平面PAB.
证明:(1)因为平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,
又因为PA⊥AB,
所以PA⊥平面ABCD,所以PA⊥CD.
(2)由已知,BC∥ED,且BC=ED,所以四边形BCDE是平行四边形,
又CD⊥AD,BC=CD,
所以四边形BCDE是正方形,连接CE(图略),所以BD⊥CE,
又因为BC∥AE,BC=AE,
所以四边形ABCE是平行四边形,
所以CE∥AB,则BD⊥AB.
由(1)知PA⊥平面ABCD,
所以PA⊥BD,
又因为PA∩AB=A,则BD⊥平面PAB,
且BD⊂平面PBD,所以平面PBD⊥平面PAB.
【变式探究】如图,已知斜三棱柱ABCA1B1C1中,点D,D1分别为AC,A1C1上的点.
(1)当等于何值时,BC1∥平面AB1D1?
(2)若平面BC1D∥平面AB1D1,求的值.
【解析】(1)如图,取D1为线段A1C1的中点,此时=1,
连接A1B交AB1于点O,连接OD1.
由棱柱的性质,知四边形A1ABB1为平行四边形,
所以点O为A1B的中点.
在△A1BC1中,点O,D1分别为A1B,A1C1的中点,
所以OD1∥BC1.
又因为OD1⊂平面AB1D1,BC1⊄平面AB1D1,
所以BC1∥平面AB1D1.
所以当=1时,BC1∥平面AB1D1.
(2)由已知,平面BC1D∥平面AB1D1,
且平面A1BC1∩平面BDC1=BC1,
平面A1BC1∩平面AB1D1=D1O.
因此BC1∥D1O,同理AD1∥DC1.
因为=,=.
又因为=1,所以=1,即=1.
【变式探究】如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.
求证:(1)DE∥平面AA1C1C;
(2)BC1⊥AB1.
【证明】(1)由题意知,E为B1C的中点,
又D为AB1的中点,因此DE∥AC.
又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,
所以DE∥平面AA1C1C.
(2)因为棱柱ABC-A1B1C1是直三棱柱,
所以CC1⊥平面ABC.
因为AC⊂平面ABC,所以AC⊥CC1.
又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,
所以AC⊥平面BCC1B1.
又因为BC1⊂平面BCC1B1,
所以BC1⊥AC.
因为BC=CC1,
所以矩形BCC1B1是正方形,
因此BC1⊥B1C.
因为AC,B1C⊂平面B1AC,AC∩B1C=C,
所以BC1⊥平面B1AC.
又因为AB1⊂平面B1AC,
所以BC1⊥AB1.
高频考点三 平面图形的折叠问题
例 3、如图①,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AB=BC.把△BAC沿AC折起到△PAC的位置,使得P点在平面ADC上的正投影O恰好落在线段AC上,如图②所示,点E,F分别为棱PC,CD的中点.
(1)求证:平面OEF∥平面PAD;
(2)求证:CD⊥平面POF;
(3)若AD=3,CD=4,AB=5,求三棱锥ECFO的体积.
【解】(1)证明:因为点P在平面ADC上的正投影O恰好落在线段AC上,
所以PO⊥平面ADC,所以PO⊥AC.
由题意知O是AC的中点,又点E是PC的中点,
所以OE∥PA,又OE⊄平面PAD,PA⊂平面PAD,
所以OE∥平面PAD.同理,OF∥平面PAD.
又OE∩OF=O,OE,OF⊂平面OEF,
所以平面OEF∥平面PAD.
(2)证明:因为OF∥AD,AD⊥CD,
所以OF⊥CD.
又PO⊥平面ADC,CD⊂平面ADC,所以PO⊥CD.
又OF∩PO=O,所以CD⊥平面POF.
(3)因为∠ADC=90°,AD=3,CD=4,
所以S△ACD=×3×4=6,
而点O,F分别是AC,CD的中点,
所以S△CFO=S△ACD=,
由题意可知△ACP是边长为5的等边三角形,
所以OP=,
即点P到平面ACD的距离为,
又E为PC的中点,所以E到平面CFO的距离为,
故VECFO=××=.
【举一反三】如图1,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD的中点,O是AC与BE的交点,将△ABE沿BE折起到图2中△A1BE的位置,得到四棱锥A1BCDE.
(1)证明:CD⊥平面A1OC;
(2)当平面A1BE⊥平面BCDE时,四棱锥A1BCDE的体积为36,求a的值.
【解析】(1)证明:在题图1中,因为AB=BC=AD=a,E是AD的中点,
∠BAD=,所以BE⊥AC.
即在题图2中,BE⊥A1O,BE⊥OC,
从而BE⊥平面A1OC,
又CD∥BE,
所以CD⊥平面A1OC.
(2)由已知,平面A1BE⊥平面BCDE,
且平面A1BE∩平面BCDE=BE,
又由(1)知,A1O⊥BE,
所以A1O⊥平面BCDE,
即A1O是四棱锥A1BCDE的高.
由图1知,A1O=AB=a,平行四边形BCDE的面积S=BE·OC=a2.
从而四棱锥A1BCDE的体积为V=×S×A1O=×a2×a=a3,
由a3=36,得a=6.
【变式探究】如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H.将△DEF沿EF折到△D′EF的位置.
(1)证明:AC⊥HD′;
(2)若AB=5,AC=6,AE=,OD′=2,求五棱锥D′-ABCFE的体积.
【解析】 (1)证明:由已知得AC⊥BD,AD=CD.
又由AE=CF得=,故AC∥EF.
由此得EF⊥HD,故EF⊥HD′,所以AC⊥HD′.
(2)由EF∥AC得==.
由AB=5,AC=6得DO=BO==4.
所以OH=1,D′H=DH=3.
于是OD′2+OH2=(2)2+12=9=D′H2,
故OD′⊥OH.
由(1)知,AC⊥HD′,又AC⊥BD,BD∩HD′=H,
所以AC⊥平面BHD′,于是AC⊥OD′.
又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC.
又由=得EF=.
五边形ABCFE的面积S=×6×8-××3=.
所以五棱锥D′-ABCFE的体积V=××2=.
【方法技巧】
平面图形翻折问题的求解方法
(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.
(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.
【变式探究】如图1,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,点G,R分别在线段DH,HB上,且=.将△AED,△CFD,△BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图2所示.
(1)求证:GR⊥平面PEF;
(2)若正方形ABCD的边长为4,求三棱锥P-DEF的内切球的半径.
【解析】(1)证明:在正方形ABCD中,∠A,∠B,∠C为直角.
∴在三棱锥P-DEF中,PE,PF,PD两两垂直.
∴PD⊥平面PEF.
∵=,即=,∴在△PDH中,RG∥PD.
∴GR⊥平面PEF.
(2)正方形ABCD边长为4.
由题意知,PE=PF=2,PD=4,EF=2,DF=2.
∴S△PEF=2,S△DPF=S△DPE=4.
S△DEF=×2×=6.
设三棱锥P-DEF内切球的半径为r,
则三棱锥的体积VP-DEF=××2×2×4=(S△PEF+2S△DPF+S△DEF)·r,解得r=.
∴三棱锥P-DEF的内切球的半径为.
1.(2019·高考全国卷Ⅱ)设α,β为两个平面,则α∥β的充要条件是( )
A.α内有无数条直线与β平行
B.α内有两条相交直线与β平行
C.α,β平行于同一条直线
D.α,β垂直于同一平面
【答案】B
【解析】对于A,α内有无数条直线与β平行,当这无数条直线互相平行时,α与β可能相交,所以A不正确;对于B,根据两平面平行的判定定理与性质知,B正确;对于C,平行于同一条直线的两个平面可能相交,也可能平行,所以C不正确;对于D,垂直于同一平面的两个平面可能相交,也可能平行,如长方体的相邻两个侧面都垂直于底面,但它们是相交的,所以D不正确.综上可知选B.
2.(2019·高考全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则( )
A.BM=EN,且直线BM,EN是相交直线
B.BM≠EN,且直线BM,EN是相交直线
C.BM=EN,且直线BM,EN是异面直线
D.BM≠EN,且直线BM,EN是异面直线
【答案】B
【解析】取CD的中点O,连接ON,EO,因为△ECD为正三角形,所以EO⊥CD,又平面ECD⊥平面ABCD,平面ECD∩平面ABCD=CD,所以EO⊥平面ABCD.设正方形ABCD的边长为2,则EO=,ON=1,所以EN2=EO2+ON2=4,得EN=2.过M作CD的垂线,垂足为P,连接BP,则MP=,CP=,所以BM2=MP2+BP2=()2+()2+22=7,得BM=,所以BM≠EN.连接BD,BE,因为四边形ABCD为正方形,所以N为BD的中点,即EN,MB均在平面BDE内,所以直线BM,EN是相交直线,选B.
1.(2018·高考全国卷Ⅱ)在长方体ABCDA1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为( )
A. B. C. D.
【答案】C.如图,连接BD1,交DB1于O,取AB的中点M,连接DM,OM,易知O为BD1的中点,所以AD1∥OM,则∠MOD为异面直线AD1与DB1所成角.因为在长方体ABCDA1B1C1D1中,AB=BC=1,AA1=,AD1==2,DM==,DB1==,所以OM=AD1=1,OD=DB1=,于是在△DMO中,由余弦定理,得cos∠MOD==,即异面直线AD1与DB1所成角的余弦值为,故选C.
2. (2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.
(Ⅰ)证明:AB1⊥平面A1B1C1;
(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.
【答案】(Ⅰ)见解析
(Ⅱ)
【解析】
方法一:
(Ⅰ)由得,
所以.
故.
由, 得,
由得,
由,得,所以,故.
因此平面.
(Ⅱ)如图,过点作,交直线于点,连结.
由平面得平面平面,
由得平面,
所以是与平面所成的角.
由得,
所以,故.
因此,直线与平面所成的角的正弦值是.
3. (2018年北京卷)如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.
(Ⅰ)求证:AC⊥平面BEF;
(Ⅱ)求二面角B-CD-C1的余弦值;
(Ⅲ)证明:直线FG与平面BCD相交.
【答案】(1)证明见解析
(2) B-CD-C1的余弦值为
(3)证明过程见解析
【解析】
(Ⅰ)在三棱柱ABC-A1B1C1中,
∵CC1⊥平面ABC,
∴四边形A1ACC1为矩形.
又E,F分别为AC,A1C1的中点,
∴AC⊥EF.
∵AB=BC.
∴AC⊥BE,
∴AC⊥平面BEF.
(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.
又CC1⊥平面ABC,∴EF⊥平面ABC.
∵BE⊂平面ABC,∴EF⊥BE.
如图建立空间直角坐称系E-xyz.
由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).
∴,
设平面BCD的法向量为,
∴,∴,
令a=2,则b=-1,c=-4,
∴平面BCD的法向量,
又∵平面CDC1的法向量为,
∴.
由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.
(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),
∴,∴,∴与不垂直,
∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.
4. (2018年江苏卷)在平行六面体中,.
求证:(1);
(2).
【答案】答案见解析
【解析】
证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.
因为AB平面A1B1C,A1B1⊂平面A1B1C,
所以AB∥平面A1B1C.
(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.
又因为AA1=AB,所以四边形ABB1A1为菱形,
因此AB1⊥A1B.
又因为AB1⊥B1C1,BC∥B1C1,
所以AB1⊥BC.
又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,
所以AB1⊥平面A1BC.
因为AB1⊂平面ABB1A1,
所以平面ABB1A1⊥平面A1BC.
1.(2017·全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )
A B C D
【解析】B选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;C选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;D选项中,AB∥NQ,且AB⊄平面MNQ,NQ⊂平面MNQ,则AB∥平面MNQ.故选A.
答案:A
2.(2017·山东卷)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.
(1)证明:A1O∥平面B1CD1;
(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.
证明:(1)取B1D1的中点O1,连接CO1,A1O1,
由于ABCD-A1B1C1D1是四棱柱,
所以A1O1∥OC,A1O1=OC,
因此四边形A1OCO1为平行四边形,所以A1O∥O1C.
又O1C⊂平面B1CD1,A1O⊄平面B1CD1,
所以A1O∥平面B1CD1.
(2)因为AC⊥BD,E,M分别为AD和OD的中点,
所以EM⊥BD,
又A1E⊥平面ABCD,BD⊂平面ABCD,
所以A1E⊥BD,
因为B1D1∥BD,
所以EM⊥B1D1,A1E⊥B1D1.
又A1E,EM⊂平面A1EM,A1E∩EM=E,
所以B1D1⊥平面A1EM.
又B1D1⊂平面B1CD1,
所以平面A1EM⊥平面B1CD1.
3.【2017江苏,15】 如图,在三棱锥A-BCD中,AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
(第15题)
A
D
B
C
E
F
【答案】(1)见解析(2)见解析
【解析】证明:(1)在平面内,因为AB⊥AD, ,所以.
又因为平面ABC, 平面ABC,所以EF∥平面ABC.
(2)因为平面ABD⊥平面BCD,
平面平面BCD=BD,
平面BCD, ,
所以平面.
因为平面,所以 .
又AB⊥AD, , 平面ABC, 平面ABC,
所以AD⊥平面ABC,
又因为AC平面ABC,
所以AD⊥AC.
高考数学二轮专题学与练 17 概率与统计(考点解读)(含解析): 这是一份高考数学二轮专题学与练 17 概率与统计(考点解读)(含解析),共54页。试卷主要包含了回归分析,独立性检验,古典概型,对立事件,互斥事件与对立事件的关系等内容,欢迎下载使用。
高考数学二轮专题学与练 14 直线与圆(考点解读)(含解析): 这是一份高考数学二轮专题学与练 14 直线与圆(考点解读)(含解析),共14页。试卷主要包含了直线方程,圆的方程,圆2+2=2的圆心和半径分别是等内容,欢迎下载使用。
高考数学二轮专题学与练 12 空间的平行与垂直(高考押题)(含解析): 这是一份高考数学二轮专题学与练 12 空间的平行与垂直(高考押题)(含解析),共21页。