终身会员
搜索
    上传资料 赚现金
    2023年高考指导数学(人教A文一轮)课时规范练4 简单的逻辑联结词、全称量词与存在量词
    立即下载
    加入资料篮
    2023年高考指导数学(人教A文一轮)课时规范练4 简单的逻辑联结词、全称量词与存在量词01
    2023年高考指导数学(人教A文一轮)课时规范练4 简单的逻辑联结词、全称量词与存在量词02
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年高考指导数学(人教A文一轮)课时规范练4 简单的逻辑联结词、全称量词与存在量词

    展开
    这是一份2023年高考指导数学(人教A文一轮)课时规范练4 简单的逻辑联结词、全称量词与存在量词,共4页。试卷主要包含了已知命题p,下面命题中假命题是,若p等内容,欢迎下载使用。

    课时规范练4 简单的逻辑联结词、全称量词与存在量词

    基础巩固组

    1.(2022江西赣州二模)已知命题p:xR,sin x+cos x,¬p(  )

    A.xR,sin x+cos x<

    B.xR,sin x+cos x<

    C.xR,sin x+cos x<

    D.xR,sin x+cos x<

    2.下列四个命题中,既是特称命题又是真命题的是(  )

    A.三角形的内角是锐角或钝角

    B.至少有一个实数x0,使>0

    C.任意一无理数的平方必是无理数

    D.存在一个负数x0,使>2

    3.(2022河南焦作一模)已知命题p:xN*,lg x<0,命题q:xR,cos x≤1,则下列命题是真命题的是(  )

    A.pq B.(¬p)q

    C.p(¬q) D.¬(pq)

    4.下面命题中假命题是(  )

    A.xR,3x>0

    B.α,βR,使sin(α+β)=sin α+sin β

    C.mR,使f(x)=m是幂函数,且在(0,+∞)上单调递增

    D.命题x0R,+1>3x0的否定是xR,x2+1>3x

    5.若命题x0R,-2x0+m<0”为真命题,则实数m的取值范围为     . 

    6.已知命题p:关于x的方程x2+ax+1=0没有实数根;命题q:x>0,2x-a>0.¬ppq都是假命题,则实数a的取值范围是     . 

    综合提升组

    7.p:命题x0N,的否定是xN,x2≤2x+1”,q:命题ab=0,a=0b=0”的否命题是ab≠0,a≠0b≠0”.则下列命题为真命题的是(  )

    A.¬p B.pq

    C.¬pq D.p(¬q)

    8.(2022河南郑州一模)已知命题p:x0R,3sin x0+4cos x0=4;命题q:xR,|x|≤1.则下列命题中为真命题的是(  )

    A.pq B.(¬p)q

    C.p(¬q) D.¬(pq)

    9.若命题x0(0,+∞),使得ax0>+4成立是假命题,则实数a的取值范围是 . 

    10.已知f(x)=ln(x2+1),g(x)=-m,x1[0,3],x2[1,2],使得f(x1)≥g(x2),则实数m的取值范围是     . 

    创新应用组

    11.设命题p:xR,x2-4x+a2>0;命题q:关于x的一元二次方程x2+(a+1)x+a-1=0的一根大于零,另一根小于零;命题r:a2-2a+1-m2≥0(m>0)的解集.

    (1)pq为真命题,pq为假命题,求实数a的取值范围;

    (2)¬r¬p的必要不充分条件,求实数m的取值范围.

     

     


    参考答案

    课时规范练4 简单的逻辑联

    结词、全称量词与存在量词

    1.D 全称命题的否定是特称命题,命题p:xR,sin x+cos x的否定是xR,sin x+cos x<,故选D.

    2.B 对于选项A,命题可改写为:对于任意三角形,其内角均为锐角或钝角,为全称命题,A不符合题意;对于选项B,命题可改写为:存在实数x0,使得>0,为特称命题,且为真命题,B符合题意;对于选项C,命题可改写为:对于任意一个无理数,其平方均为无理数,为全称命题,C不符合题意;对于选项D,命题为特称命题,但当x<0,<0<2,命题为假命题,D不符合题意.

    3.B 因为xN*,lg x≥0,所以命题p为假命题,¬p为真命题.因为xR,cos x≤1成立,所以命题q为真命题,所以(¬p)q为真命题.

    4.D 选项A,因为y=ax(a>0,a≠1)的值域为(0,+∞),所以xR,3x>0,A为真命题;选项B,α=0,β=,sin(α+β)=sin=1,sin 0+sin=0+1=1,B为真命题;选项C,因为f(x)=m是幂函数,所以m=1,f(x)=x3,且在(0,+∞)上单调递增,C为真命题;选项D,命题x0R,+1>3x0否定是xR,x2+1≤3x”,D为假命题.

    5.(-∞,1) 由题意可知,不等式x2-2x+m<0有解,Δ=4-4m>0,解得m<1,

    实数m的取值范围为(-∞,1).

    6.(1,2) 因为¬ppq都是假命题,所以p是真命题,q是假命题.

    p是真命题,Δ=a2-4<0,解得-2<a<2.

    因为x>0,2x-a>0,a<2x(0,+∞)上恒成立,a≤1,又因为q是假命题,所以a>1.

    综上,a的取值范围是(1,2).

    7.D p:命题x0N,的否定是xN,x2≤2x+1”,为真命题;因为ab=0,a=0b=0”的否命题是ab≠0,a≠0b≠0”,q为假命题,¬q为真命题,所以p(¬q)为真命题.

    8.B 3sin x+4cos x=5sin(x+θ)[-5,5],4>5,命题p为假命题.|x|≥0,|x|0=1,命题q为真命题.pq为假命题;(¬p)q为真命题;p(¬q)为假命题;¬(pq)为假命题.故选B.

    9.(-∞,4] 若命题x0(0,+∞),使得ax0>+4成立是假命题,则有x(0,+∞),使得axx2+4成立是真命题,ax+,a,

    又因为x+≥2=4,当且仅当x=2,等号成立,a≤4.

    10. x[0,3],f(x)min=f(0)=0,x[1,2],g(x)min=g(2)=-m,f(x)ming(x)min,0≥-m,所以m.

    11.(1)若命题p为真命题,xR,x2-4x+a2>0,Δ=16-4a2<0,

    解得a<-2a>2.

    若命题q为真命题,即关于x的一元二次方程x2+(a+1)x+a-1=0的一根大于零,另一根小于零,解得a<1.

    因为pq为真命题,pq为假命题,p,q一真一假.

    pq,解得a>2;

    pq,解得-2≤a<1.

    综上所述,实数a的取值范围是[-2,1)(2,+∞).

    (2)对于命题r,因为m>0,a2-2a+1-m2≥0,可得(a-1)2m2,

    所以a-1≤-ma-1≥m,解得a≤1-ma≥1+m.

    因为¬r¬p的必要不充分条件,(1-m,1+m)[-2,2],

    所以解得m>3.因此,实数m的取值范围是(3,+∞).

     

    相关试卷

    2023年高考指导数学(人教A文一轮)课时规范练20 简单的三角恒等变换: 这是一份2023年高考指导数学(人教A文一轮)课时规范练20 简单的三角恒等变换,共6页。试卷主要包含了求值等内容,欢迎下载使用。

    2023年高考指导数学(人教A文一轮)课时规范练2 简单不等式的解法: 这是一份2023年高考指导数学(人教A文一轮)课时规范练2 简单不等式的解法,共4页。试卷主要包含了已知a>0,且a≠1等内容,欢迎下载使用。

    2023年高考数学一轮复习课时规范练4简单的逻辑联结词全称量词与存在量词含解析北师大版文: 这是一份2023年高考数学一轮复习课时规范练4简单的逻辑联结词全称量词与存在量词含解析北师大版文,共6页。试卷主要包含了已知命题p,命题p,下面命题中假命题是,若p,设有下列四个命题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map