备战2024年高考数学大一轮复习(人教A版-理)第六章 §6.5 数列求和
展开
这是一份备战2024年高考数学大一轮复习(人教A版-理)第六章 §6.5 数列求和,共13页。试卷主要包含了猜想an=2n-1等内容,欢迎下载使用。
知识梳理
数列求和的几种常用方法
1.公式法
直接利用等差数列、等比数列的前n项和公式求和.
(1)等差数列的前n项和公式:
Sn=eq \f(na1+an,2)=na1+eq \f(nn-1,2)d.
(2)等比数列的前n项和公式:
Sn=eq \b\lc\{\rc\ (\a\vs4\al\c1(na1,q=1,,\f(a1-anq,1-q)=\f(a11-qn,1-q),q≠1.))
2.分组求和法与并项求和法
(1)分组求和法
若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.
(2)并项求和法
一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求解.
3.错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.
4.裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.
常见的裂项技巧
(1)eq \f(1,nn+1)=eq \f(1,n)-eq \f(1,n+1).
(2)eq \f(1,nn+2)=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n)-\f(1,n+2))).
(3)eq \f(1,2n-12n+1)=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2n-1)-\f(1,2n+1))).
(4)eq \f(1,\r(n)+\r(n+1))=eq \r(n+1)-eq \r(n).
(5)eq \f(1,nn+1n+2)=eq \f(1,2)eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,nn+1)-\f(1,n+1n+2))).
常用结论
常用求和公式
(1)1+2+3+4+…+n=eq \f(nn+1,2).
(2)1+3+5+7+…+(2n-1)=n2.
(3)12+22+32+…+n2=eq \f(nn+12n+1,6).
(4)13+23+33+…+n3=eq \b\lc\[\rc\](\a\vs4\al\c1(\f(nn+1,2)))2.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)如果数列{an}为等比数列,且公比不等于1,则其前n项和Sn=eq \f(a1-an+1,1-q).( √ )
(2)求Sn=a+2a2+3a3+…+nan时,只要把上式等号两边同时乘a即可根据错位相减法求得.( × )
(3)已知等差数列{an}的公差为d,则有eq \f(1,anan+1)=eq \f(1,d)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,an)-\f(1,an+1))). ( × )
(4)sin21°+sin22°+sin23°+…+sin288°+sin289°=44.5.( √ )
教材改编题
1.已知函数f(n)=eq \b\lc\{\rc\ (\a\vs4\al\c1(n2当n为奇数时,,-n2当n为偶数时,))且an=f(n)+f(n+1),则a1+a2+a3+…+a100等于( )
A.0 B.100 C.-100 D.10 200
答案 B
解析 由题意,得a1+a2+a3+…+a100
=12-22-22+32+32-42-42+52+…+992-1002-1002+1012
=-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100)
=-(1+2+…+99+100)+(2+3+…+100+101)
=-50×101+50×103=100.
2.数列{an}的前n项和为Sn.若an=eq \f(1,nn+1),则S5等于( )
A.1 B.eq \f(5,6) C.eq \f(1,6) D.eq \f(1,30)
答案 B
解析 因为an=eq \f(1,nn+1)=eq \f(1,n)-eq \f(1,n+1),
所以S5=a1+a2+…+a5=1-eq \f(1,2)+eq \f(1,2)-eq \f(1,3)+…-eq \f(1,6)=eq \f(5,6).
3.Sn=eq \f(1,2)+eq \f(1,2)+eq \f(3,8)+…+eq \f(n,2n)等于( )
A.eq \f(2n-n-1,2n) B.eq \f(2n+1-n-2,2n)
C.eq \f(2n-n+1,2n) D.eq \f(2n+1-n+2,2n)
答案 B
解析 由Sn=eq \f(1,2)+eq \f(2,22)+eq \f(3,23)+…+eq \f(n,2n),①
得eq \f(1,2)Sn=eq \f(1,22)+eq \f(2,23)+…+eq \f(n-1,2n)+eq \f(n,2n+1),②
①-②得,eq \f(1,2)Sn=eq \f(1,2)+eq \f(1,22)+eq \f(1,23)+…+eq \f(1,2n)-eq \f(n,2n+1)=eq \f(\f(1,2)\b\lc\[\rc\](\a\vs4\al\c1(1-\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n)),1-\f(1,2))-eq \f(n,2n+1),
∴Sn=eq \f(2n+1-n-2,2n).
题型一 分组求和与并项求和
例1 (2023·菏泽模拟)已知数列{an}中,a1=1,它的前n项和Sn满足2Sn+an+1=2n+1-1.
(1)证明:数列eq \b\lc\{\rc\}(\a\vs4\al\c1(an-\f(2n,3)))为等比数列;
(2)求S1+S2+S3+…+S2n.
(1)证明 由2Sn+an+1=2n+1-1(n≥1),①
得2Sn-1+an=2n-1(n≥2),②
由①-②得an+an+1=2n(n≥2),
得an+1=-an+2n⇒an+1-eq \f(2n+1,3)=-eq \b\lc\(\rc\)(\a\vs4\al\c1(an-\f(2n,3)))(n≥2),
又当n=1时,由①得a2=1⇒a2-eq \f(22,3)=-eq \b\lc\(\rc\)(\a\vs4\al\c1(a1-\f(2,3))),
所以对任意的n∈N*,都有an+1-eq \f(2n+1,3)=-eq \b\lc\(\rc\)(\a\vs4\al\c1(an-\f(2n,3))),
故eq \b\lc\{\rc\}(\a\vs4\al\c1(an-\f(2n,3)))是以eq \f(1,3)为首项,-1为公比的等比数列.
(2)解 由(1)知an-eq \f(2n,3)=eq \f(-1n-1,3)⇒an=eq \f(2n+-1n-1,3),
所以an+1=eq \f(2n+1+-1n,3),代入①得Sn=eq \f(2n+1,3)-eq \f(-1n,6)-eq \f(1,2),
所以S1+S2+…+S2n=eq \f(1,3)(22+23+…+22n+1)-eq \f(1,6)[(-1)+(-1)2+…+(-1)2n]-eq \f(2n,2)=eq \f(1,3)×eq \f(22-22n+2,1-2)-0-n=eq \f(22n+2-3n-4,3).
延伸探究 在本例(2)中,如何求S1+S2+S3+…+Sn?
解 当n为偶数时,
S1+S2+S3+…+Sn
=eq \f(1,3)(22+23+…+2n+1)-eq \f(1,6)[(-1)+(-1)2+…+(-1)n-1+(-1)n]-eq \f(n,2)
=eq \f(1,3)×eq \f(22-2n+1·2,1-2)-eq \f(n,2)
=eq \f(2n+2-4,3)-eq \f(n,2)=eq \f(2n+3-3n-8,6).
当n为奇数时,
S1+S2+S3+…+Sn
=(S1+S2+S3+…+Sn+Sn+1)-Sn+1
=eq \f(2n+4-3n+1-8,6)-eq \b\lc\[\rc\](\a\vs4\al\c1(\f(2n+2,3)-\f(-1n+1,6)-\f(1,2)))
=eq \f(2n+3-3n-7,6).
综上,S1+S2+…+Sn=eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(2n+3-3n-8,6),n为偶数,,\f(2n+3-3n-7,6),n为奇数.))
思维升华 (1)若数列{cn}的通项公式为cn=an±bn,且{an},{bn}为等差或等比数列,可采用分组求和法求数列{cn}的前n项和.
(2)若数列{cn}的通项公式为cn=eq \b\lc\{\rc\ (\a\vs4\al\c1(an,n为奇数,,bn,n为偶数,))其中数列{an},{bn}是等比数列或等差数列,可采用分组求和法求{cn}的前n项和.
跟踪训练1 记数列{an}的前n项和为Sn,已知Sn=2an-2n+1.
(1)求数列{an}的通项公式;
(2)记bn=(-1)n·lg2eq \b\lc\[\rc\](\a\vs4\al\c1(\f(2,3)an+4-\f(4,3))),求数列{bn}的前n项和Tn.
解 (1)当n=1时,由Sn=2an-2n+1,可得a1=S1=2a1-2+1,即有a1=1.
当n≥2时,an=Sn-Sn-1=2an-2n+1-2an-1+2(n-1)-1,
即an=2an-1+2,可得an+2=2(an-1+2),显然an-1+2≠0.
所以数列{an+2}是首项为3,公比为2的等比数列,则an+2=3·2n-1,即有an=3·2n-1-2.
(2)bn=(-1)n·lg2eq \b\lc\[\rc\](\a\vs4\al\c1(\f(2,3)3·2n-1+2-\f(4,3)))
=(-1)n·lg22n=(-1)n·n.
当n为偶数时,
Tn=-1+2-3+4-…-(n-1)+n
=(-1+2)+(-3+4)+…+[-(n-1)+n]=eq \f(n,2).
当n为奇数时,
Tn=-1+2-3+4-…+(n-1)-n
=eq \f(n-1,2)-n=eq \f(-n-1,2)=-eq \f(n+1,2).
综上,Tn=eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(n,2),n为偶数,,-\f(n+1,2),n为奇数.))
题型二 错位相减法求和
例2 (12分)(2021·全国乙卷)设{an}是首项为1的等比数列,数列{bn}满足bn=eq \f(nan,3).已知a1,3a2,9a3成等差数列.
(1)求{an}和{bn}的通项公式; [切入点:设基本量q]
(2)记Sn和Tn分别为{an}和{bn}的前n项和.证明:Tn
相关试卷
这是一份2024年数学高考大一轮复习第六章 §6.5 数列求和,共3页。试卷主要包含了已知数列{an},定义,给出以下条件等内容,欢迎下载使用。
这是一份2024年数学高考大一轮复习第六章 §6.5 数列求和,共7页。
这是一份2024年数学高考大一轮复习第六章 §6.5 数列求和(一)(附答单独案解析),共5页。