备战2024年高考数学大一轮复习(人教A版-理)第三章 §3.7 利用导数研究函数的零点
展开
这是一份备战2024年高考数学大一轮复习(人教A版-理)第三章 §3.7 利用导数研究函数的零点,共12页。
题型一 利用函数性质研究函数的零点
例1 已知函数f(x)=xsin x-1.
(1)讨论函数f(x)在区间eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(π,2),\f(π,2)))上的单调性;
(2)证明:函数y=f(x)在[0,π]上有两个零点.
(1)解 因为函数f(x)的定义域为R,
f(-x)=-xsin(-x)-1=f(x),所以函数f(x)为偶函数,
又f′(x)=sin x+xcs x,且当x∈eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2)))时,f′(x)≥0,所以函数f(x)在eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2)))上单调递增,又函数f(x)为偶函数,所以f(x)在eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(π,2),0))上单调递减,
综上,函数f(x)在eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2)))上单调递增,在eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(π,2),0))上单调递减.
(2)证明 由(1)得,f(x)在eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2)))上单调递增,又f(0)=-10,所以f(x)在eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2)))内有且只有一个零点,
当x∈eq \b\lc\(\rc\](\a\vs4\al\c1(\f(π,2),π))时,令g(x)=f′(x)=sin x+xcs x,
则g′(x)=2cs x-xsin x,当x∈eq \b\lc\(\rc\](\a\vs4\al\c1(\f(π,2),π))时,g′(x)0,g(π)=-πg(m)=0,即f′(x)>0,则f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),m))上单调递增,
当x∈(m,π]时,有g(x)0,f(1)=a-10,因为函数在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,a)))上单调递减,在eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a),+∞))上单调递增,所以要使得函数有唯一零点,只需f(x)min=f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a)))=1-(a-1)ln a+a-2=(a-1)(1-ln a)=0,解得a=1或a=e.
综上,a≤0或a=1或a=e.
题型二 数形结合法研究函数的零点
例2 (2023·郑州质检)已知函数f(x)=ex-ax+2a,a∈R.
(1)讨论函数f(x)的单调性;
(2)求函数f(x)的零点个数.
解 (1)f(x)=ex-ax+2a,定义域为R,且f′(x)=ex-a,
当a≤0时,f′(x)>0,则f(x)在R上单调递增;当a>0时,令f′(x)=0,则x=ln a,
当x0,f(x)单调递增.
综上所述,当a≤0时,f(x)在R上单调递增;
当a>0时,f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.
(2)令f(x)=0,得ex=a(x-2),
当a=0时,ex=a(x-2)无解,∴f(x)无零点,
当a≠0时,eq \f(1,a)=eq \f(x-2,ex),
令φ(x)=eq \f(x-2,ex),x∈R,∴φ′(x)=eq \f(3-x,ex),
当x∈(-∞,3)时,φ′(x)>0;
当x∈(3,+∞)时,φ′(x)eq \f(1,e3),即0
相关试卷
这是一份2024年数学高考大一轮复习第三章 §3.7 利用导数研究函数的零点,共2页。
这是一份2024年数学高考大一轮复习第三章 §3.7 利用导数研究函数的零点,共6页。
这是一份高考数学第一轮复习第三章 §3.7 利用导数研究函数零点,共13页。试卷主要包含了已知函数f=ex+ax-a,已知函数f=eq \f-2等内容,欢迎下载使用。