艺术生高考数学真题演练 专题08 平面解析几何(解答题)(学生版)
展开
这是一份艺术生高考数学真题演练 专题08 平面解析几何(解答题)(学生版),共11页。
专题08 平面解析几何(解答题)1.【2019年高考全国Ⅰ卷文数】已知点A,B关于坐标原点O对称,│AB│=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,│MA│−│MP│为定值?并说明理由. 2.【2019年高考全国Ⅱ卷文数】已知是椭圆的两个焦点,P为C上一点,O为坐标原点.(1)若为等边三角形,求C的离心率;(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围. 3.【2019年高考全国Ⅲ卷文数】已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程. 4.【2019年高考北京卷文数】已知椭圆的右焦点为,且经过点.(1)求椭圆C的方程;(2)设O为原点,直线与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N,若|OM|·|ON|=2,求证:直线l经过定点. 5.【2019年高考天津卷文数】设椭圆的左焦点为F,左顶点为A,上顶点为B.已知(O为原点).(1)求椭圆的离心率;(2)设经过点F且斜率为的直线l与椭圆在x轴上方的交点为P,圆C同时与x轴和直线l相切,圆心C在直线x=4上,且,求椭圆的方程. 6.【2019年高考江苏卷】如图,在平面直角坐标系xOy中,椭圆C:的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标. 7.【2019年高考浙江卷】如图,已知点为抛物线的焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记的面积分别为.(1)求p的值及抛物线的准线方程;(2)求的最小值及此时点G的坐标. 8.【2018年高考全国Ⅰ文数】设抛物线,点,,过点的直线与交于,两点.(1)当与轴垂直时,求直线的方程;(2)证明:. 9.【2018年高考全国Ⅱ卷文数】设抛物线的焦点为,过且斜率为的直线与交于,两点,. (1)求的方程; (2)求过点,且与的准线相切的圆的方程. 10.【2018年高考全国Ⅲ卷文数】已知斜率为的直线与椭圆交于,两点.线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:. 11.【2018年高考北京卷文数】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点A,B.(1)求椭圆M的方程;(2)若,求的最大值;(3)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点共线,求k. 12.【2018年高考天津卷文数】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.(1)求椭圆的方程;(2)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求k的值. 13.【2018年高考江苏卷】如图,在平面直角坐标系中,椭圆过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程. 14.【2018年高考浙江卷】如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围. 15.【2017年高考全国Ⅰ卷文数】设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AMBM,求直线AB的方程. 16.【2017年高考全国Ⅱ卷文数】设O为坐标原点,动点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点在直线上,且.证明:过点P且垂直于OQ的直线过C的左焦点F. 17.【2017年高考全国Ⅲ卷文数】在直角坐标系xOy中,曲线与x轴交于A,B两点,点C的坐标为.当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值. 18.【2017年高考北京卷文数】已知椭圆C的两个顶点分别为A(−2,0),B(2,0),焦点在x轴上,离心率为.(1)求椭圆C的方程;(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5. 19.【2017年高考天津卷文数】已知椭圆的左焦点为,右顶点为,点的坐标为,的面积为.(1)求椭圆的离心率;(2)设点在线段上,,延长线段与椭圆交于点,点,在轴上,,且直线与直线间的距离为,四边形的面积为.(i)求直线的斜率;(ii)求椭圆的方程. 20.【2017年高考山东卷文数】在平面直角坐标系xOy中,已知椭圆C:(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为.(1)求椭圆C的方程;(2)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N分别相切于点E,F,求EDF的最小值. 21.【2017年高考浙江卷】如图,已知抛物线,点A,,抛物线上的点.过点B作直线AP的垂线,垂足为Q.(1)求直线AP斜率的取值范围;(2)求的最大值. 22.【2017年高考江苏卷】如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,离心率为,两准线之间的距离为8.点在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线. (1)求椭圆的标准方程; (2)若直线,的交点在椭圆上,求点的坐标.
相关试卷
这是一份艺术生高考数学真题演练 专题15 概率与统计(解答题)(学生版),共14页。
这是一份艺术生高考数学真题演练 专题11 平面向量(学生版),共3页。
这是一份艺术生高考数学真题演练 专题08 平面解析几何(解答题)(教师版),共32页。