艺术生高考数学专题讲义:考点49 古典概型
展开考点四十九 古典概型
知识梳理
1.基本事件的特点
(1)任何两个基本事件都是互斥的.
(2)任何事件都可以表示成基本事件的和(除不可能事件).
2.古典概型
具有以下两个特征的随机试验的数学模型称为古典的概率模型,简称古典概型.
(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.
(2)每一个试验结果出现的可能性相等.
3.古典概型的概率公式
P(A)==.
典例剖析
题型一 简单古典概型的求法
例1 (2015新课标Ⅰ文)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为________.
答案
解析 从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为.
变式训练 (2014·高考天津卷)某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:
| 一年级 | 二年级 | 三年级 |
男同学 | A | B | C |
女同学 | X | Y | Z |
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).
(1)用表中字母列举出所有可能的结果;
(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.
解析 (1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.
(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.
因此,事件M发生的概率P(M)==.
解题要点 求古典概型概率的基本步骤:
(1)算出所有基本事件的个数n.
(2)求出事件A包含的所有基本事件数m.
(3)代入公式P(A)=,求出P(A).
题型二 较复杂古典概型的概率
例2 (2015山东文)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
| 参加书法社团 | 未参加书法社团 |
参加演讲社团 | 8 | 5 |
未参加演讲社团 | 2 | 30 |
(1) 从该班随机选1名同学,求该同学至少参加上述一个社团的概率;
(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.
解析 (1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,
故至少参加上述一个社团的共有45-30=15人,
所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P==.
(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:
{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},
{A2,B3},{A3,B1},{A3,B2},{A3,B3},{A4,B1},
{A4,B2},{A4,B3},{A5,B1},{A5,B2},{A5,B3},
共15个.
根据题意,这些基本事件的出现是等可能的,
事件“A1被选中且B1未被选中”所包含的基本事件有:{A1,B2},{A1,B3},共2个.
因此,A1被选中且B1未被选中的概率为P=.
变式训练 (2015天津文)(本小题满分13分)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.
(1)求应从这三个协会中分别抽取的运动员的人数;
(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.
①用所给编号列出所有可能的结果;
②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.
解析 (1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.
(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.
②编号为A5和A6的两名运动员中至少有1人被抽到的所有可能结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共9种.
因此,事件A发生的概率P(A)==.
解题要点 求较复杂事件的概率问题的方法:
(1)将所求事件转化成彼此互斥的事件的和事件,再利用互斥事件的概率加法公式求解.
(2)先求其对立事件的概率,再利用对立事件的概率公式求解.
当堂练习
1.从1,2,3,4,5中随机抽三个不同的数,则其和为奇数的概率为________.
答案
解析 从1,2,3,4,5中随机抽三个不同的数共有(1,2,3)、(1,2,4)、(1,2,5)、(1,3,4)、(1,3,5)、(1,4,5)、(2,3,4)、(2,3,5)、(2,4,5)、(3,4,5)共10种情况,其中(1,2,4)、(1,3,5)、(2,3,4)、(2,4,5)中三个数字和为奇数,所以概率为.
2.一枚硬币连掷两次,只有一次出现正面的概率为________.
答案
解析 一枚硬币连掷两次,基本事件有(正,正),(正,反),(反,正),(反,反),其中只有一次出现正面的概率为P==.
3. 从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是________.
答案
解析 从1,2,3,4中任取2个不同的数,共有的情形有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共有6种不同的情形,其中2个数之差的绝对值为2的情形有(1,3),(2,4)共两种不同的情形,其概率P==.
4.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为________.
答案
解析 五人录用三人共有10种不同方式,分别为:{丙,丁,戊},{乙,丁,戊},{乙,丙,戊},{乙,丙,丁},{甲,丁,戊},{甲,丙,戊},{甲, 丙,丁},{甲,乙,戊},{甲,乙,丁},{甲,乙,丙}.其中含甲或乙的情况有9种.
5.(2015江苏)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.
答案
解析 这两只球颜色相同的概率为,故两只球颜色不同的概率为1-=.
课后作业
一、 填空题
1. (2015广东文)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为________.
答案 0.6
解析 5件产品中有2件次品,记为a,b,有3件合格品,记为c,d,e,从这5件产品中任取2件,结果有(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)共10种.恰有一件次品的结果有6种,则其概率为p==0.6.
2.一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是________.
答案
解析 基本事件为:(黑1,黑2),(黑1,黑3),(黑1,红1),(黑1,红2),(黑2,黑3),(黑2,红1),(黑2,红2),(黑3,红1),(黑3,红2),(红1,红2)共10个结果.同色球为(黑1,黑2),(黑1,黑3),(黑2,黑3),(红1,红2)共4个结果,∴P=.
3.集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是________.
答案
解析 从A、B中各任取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中两个数之和为4的有(2,2),(3,1),故所求概率为=.
4.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是________.
答案
解析 基本事件的个数有5×3=15,其中满足b>a的有3种,所以b>a的概率为=.
5.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是________.
答案
解析 该试验中会出现(白1,白2),(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2)和(黑1,黑2)共6种等可能的结果,事件“至少摸出1个黑球”所含有的基本事件为(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2)和(黑1,黑2)共5种,据古典概型概率公式,得事件“至少摸出1个黑球”的概率是.
6.(2014年广东卷)从字母a,b,c,d,e中任取两个不同的字母,则取到字母a的概率为________.
答案
解析 从a,b,c,d,e中任取两个,共有如下10种不同的情形:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),其中取到a的有(a,b),(a,c),(a,d),(a,e),共有4种不同的情形,其概率P==.
7.一名同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xOy中,以(x,y)为坐标的点落在直线2x+y=8上的概率为________.
答案
解析 依题意,以(x,y)为坐标的点有6×6=36个,其中落在直线2x+y=8上的点有(1,6),(2,4),(3,2)共3个.故所求事件的概率P==.
8.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6}若|a-b|≤1,就称甲、乙“心有灵犀”,现任意找两人玩这个游戏,则他们“心有灵犀”的概率为________.
答案
解析 两人玩游戏,共有6×6=36种不同的情形,其中满足|a-b|≤1的情形有:若a=1,b=1,2;若a=2,b=1,2,3;若a=3,b=2,3,4;若a=4,b=3,4,5;若a=5,b=4,5,6;若a=6,则b=5,6.共有16种不同的情形,∴他们“心有灵犀”的概率为P==.
9.(2014年全国卷Ⅰ)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.
答案
解析 记2本数学书分别记为1,2,1本语文书记为3,将其排成一行,共有如下6种不同的情形(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1).其中2本数学书相邻的有(1,2,3),(2,1,3),(3,1,2),(3,2,1)共4种不同的情形,∴其概率P==.
10.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为________.
答案
解析 三人站成一排,有甲乙丙,甲丙乙,乙丙甲,乙甲丙,丙甲乙,丙乙甲共6种,其中甲乙相邻的有4种,故所求概率为P==.
11.有一质地均匀的正四面体,它的四个面上分别有1,2,3,4四个数字,现将它连续抛掷3次,其底面落于桌面,记三次在正四面体底面的数字和为S,则“S恰好为4”的概率为__________.
答案
解析 本题是一道古典概型问题.用有序实数对(a,b,c)来记连续抛掷3次得到的数字,总事件中含4×4×4=64个基本事件,取S=a+b+c,事件“S恰好为4”中包含了(1,1,2),(1,2,1),(2,1,1)三个基本事件,则P(S恰好为4)==.
二、解答题
12. (2015湖南文)(本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1、b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖.
(1)用球的标号列出所有可能的摸出结果;
(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.
解析 (1)所有可能结果为:(A1,a1),(A1,a2),(A1,b1),(A1,b2),(A2,a1),(A2,a2),(A2,b1),(A2,b2);(B,a1),(B,a2),(B,b1),(B,b2)共计12种结果.
(2)设“中奖”为事件A,则P(A)==,P()=1-=,P(A)<P(),故此种说法不正确.
13.(2015安徽文)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100].
(1)求频率分布直方图中a的值;
(2)估计该企业的职工对该部门评分不低于80的概率;
(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.
解析 (1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006.
(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4.
所以该企业职工对该部门评分不低于80的概率的估计值为0.4.
(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;
受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2,
从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2}.又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为P=.
艺术生高考数学专题讲义:考点48 事件与概率: 这是一份艺术生高考数学专题讲义:考点48 事件与概率,共10页。试卷主要包含了随机事件和确定事件,频率与概率,事件的关系与运算,概率的几个基本性质,互斥事件与对立事件的区别与联系等内容,欢迎下载使用。
艺术生高考数学专题讲义:考点42 椭圆: 这是一份艺术生高考数学专题讲义:考点42 椭圆,共10页。试卷主要包含了椭圆的概念,椭圆的标准方程和几何性质,点P和椭圆的关系,椭圆中的弦长公式,椭圆中点弦有关的结论,设F1,F2分别是椭圆C,已知椭圆E等内容,欢迎下载使用。
艺术生高考数学专题讲义:考点40 圆的方程: 这是一份艺术生高考数学专题讲义:考点40 圆的方程,共7页。试卷主要包含了圆的定义等内容,欢迎下载使用。