开学活动
搜索
    上传资料 赚现金

    高中数学新教材同步课时精品讲练选择性必修第三册 第6章 6.2.1 排列(含解析)

    高中数学新教材同步课时精品讲练选择性必修第三册 第6章 6.2.1 排列(含解析)第1页
    高中数学新教材同步课时精品讲练选择性必修第三册 第6章 6.2.1 排列(含解析)第2页
    高中数学新教材同步课时精品讲练选择性必修第三册 第6章 6.2.1 排列(含解析)第3页
    还剩6页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学新教材同步课时精品讲练选择性必修第三册 第6章 6.2.1 排列(含解析)

    展开

    这是一份高中数学新教材同步课时精品讲练选择性必修第三册 第6章 6.2.1 排列(含解析),共9页。
    §6.2 排列与组合6.2.1 排 列学习目标 1.理解并掌握排列的概念.2.能应用排列知识解决简单的实际问题.知识点一 排列的定义一般地,从n个不同元素中取出m(mn)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.知识点二 排列相同的条件两个排列相同的充要条件:(1)两个排列的元素完全相同.(2)元素的排列顺序也相同.1123321是相同的排列.( ×  )2.同一个排列中,同一个元素不能重复出现.(  )3.在一个排列中,若交换两个元素的位置,则该排列不发生变化.( × )4.从4个不同元素中任取3个元素,只要元素相同得到的就是相同的排列.( × )一、排列的概念1 判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同)(2)2个小组分别去植树和种菜;(3)2个小组去种菜;(4)10人组成一个学习小组;(5)3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互打电话解 (1)票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)(4)不存在顺序问题,不属于排列问题.(5)每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.(6)AB打电话BA打电话是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)(5)(6)是排列问题,(1)(3)(4)不是排列问题.反思感悟 判断一个具体问题是否为排列问题的思路跟踪训练1 判断下列问题是否为排列问题:(1)会场有50个座位,要求选出3个座位有多少种方法?若选出3个座位安排三位客人,又有多少种方法?(2)从集合M{1,29}中,任取两个元素作为ab,可以得到多少个焦点在x轴上的椭圆方程1?可以得到多少个焦点在x轴上的双曲线方程1?(3)平面上有5个点,其中任意三个点不共线,这5个点最多可确定多少条直线?可确定多少条射线?解 (1)第一问不是排列问题,第二问是排列问题.入座问题同排队问题,与顺序有关,故选3个座位安排三位客人是排列问题.(2)第一问不是排列问题,第二问是排列问题.若方程1表示焦点在x轴上的椭圆,则必有a>bab的大小关系一定;在双曲线1中,不管a>b还是a<b,方程1均表示焦点在x轴上的双曲线,且是不同的双曲线,故是排列问题.(3)确定直线不是排列问题,确定射线是排列问题.二、画树形图写排列2 将ABCD四名同学按一定顺序排成一行,要求自左向右,且A不排在第一,B不排在第二,C不排在第三,D不排在第四,试用树形图列出所有可能的排法. 树形图(如图)由树形图知,所有排法有BADCBCDABDACCADBCDABCDBADABCDCABDCBA.反思感悟 树形图的画法(1)确定首位,以哪个元素在首位为分类标准进行确定首位.(2)确定第二位,在每一个分支上再按余下的元素,在前面元素不变的情况下定第二位并按顺序分类.(3)重复以上步骤,直到写完一个排列为止.跟踪训练2 (1)1,2,3,4四个数字中任取两个数字组成两位数,共有多少个不同的两位数?(2)写出从4个元素abcd中任取3个元素的所有排列. (1)由题意作树形图,如图.故所有两位数为12,13,14,21,23,24,31,32,34,41,42,43,共有12个.(2)由题意作树形图,如图.故所有的排列为:abcabdacbacdadbadcbacbadbcabcdbdabdccabcadcbacbdcdacdbdabdacdbadbcdcadcb,共有24个.三、简单的排列问题3 (1)7本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)7种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?解 (1)7本不同的书中选3本送给3名同学,相当于从7个元素中任取3个元素的一个排列,所以共有7×6×5210()不同的送法.(2)7种不同的书中买3本书,这3本书并不要求都不相同,根据分步乘法计数原理,共有7×7×7343()不同的送法.反思感悟 对于简单的排列问题,其解题思路可借助分步乘法计数原理进行,即采用元素分析法或位置分析法求解.跟踪训练3 (1)沪宁高铁线上有六个大站:上海、苏州、无锡、常州、镇江、南京,铁路部门应为沪宁线上的六个大站(这六个大站之间)准备不同的火车票的种数为(  )A15  B30  C12  D36答案 B解析 对于两个大站AB,从AB的火车票与从BA的火车票不同,因为每张车票对应一个起点站和一个终点站,因此,每张火车票对应从6个不同元素(大站)中取出2个不同元素(起点站和终点站)的一种排列,故不同的火车票有6×530()(2)3盆不同品种的花排成一排,共有________种不同的排法.答案 6解析 共有3×2×16()不同的排法.1(多选)下面问题中,不是排列问题的是(  )A.由1,2,3三个数字组成无重复数字的三位数B.从40人中选5人组成篮球队C.从100人中选2人抽样调查D.从1,2,3,4,5中选2个数组成集合答案 BCD解析 选项A中组成的三位数与数字的排列顺序有关,选项BCD只需取出元素即可,与元素的排列顺序无关.2.从甲、乙、丙三人中选两人站成一排的所有站法为(  )A.甲乙、乙甲、甲丙、丙甲B.甲乙丙、乙丙甲C.甲乙、甲丙、乙甲、乙丙、丙甲、丙乙D.甲乙、甲丙、乙丙答案 C解析 从三人中选出两人,而且要考虑这两人的顺序,所以有如下6种站法:甲乙、甲丙、乙甲、乙丙、丙甲、丙乙.3.从5本不同的书中选两本送给2名同学,每人一本,则不同的送书方法的种数为(  )A5  B10  C20  D60答案 C解析 不同的送书种数为5×420.4.从1,2,3,44个数字中选出3个数字构成无重复数字的三位数有________个.答案 245.有8种不同的菜种,任选4种种在不同土质的4块地里,有________种不同的种法.答案 1 680解析 4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有8×7×6×51 680()1知识清单:(1)排列的定义:顺序性.(2)树形图法列举排列.(3)排列的简单应用.2.方法归纳:数形结合.3.常见误区:排列的定义不明确.1(多选)1,2,3,4四个数字中,任选两个数做以下数学运算,并分别计算它们的结果.在这些问题中,相应运算可以看作排列问题的有(  )A.加法  B.减法  C.乘法  D.除法答案 BD解析 因为加法和乘法满足交换律,所以选出两个数做加法和乘法时,结果与两数字位置无关,故不是排列问题,而减法、除法与两数字的位置有关,故是排列问题,故选BD.2.某学习小组共5人,约定假期每两人相互聊天,共需发起的聊天次数为(  )A20  B15  C10  D5答案 A解析 由题意得共需发起的聊天次数为5×420.3.从1,2,3,4中任取两个不同数字组成平面直角坐标系中一个点的坐标,则组成不同点的个数为(  )A2  B4  C12  D24答案 C4.甲、乙、丙三人排成一排照相,甲不站在排头的所有排列种数为(  )A6  B4  C8  D10答案 B解析 列树形图如下:故组成的排列为丙甲乙,丙乙甲,乙甲丙,乙丙甲,共4种.5.将字母aabbcc排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(  )A12  B18  C24  D36答案 A解析 先排第一列,因为每列的字母互不相同,因此共有3×2×16()不同的排法,再排第二列,其中第二列第一行的字母共有2种不同的排法,第二列第二、三行的字母只有1种排法,所以共有6×2×112()不同的排法.6.从abcde五个元素中每次取出三个元素,可组成________个以b为首的不同的排列,它们分别是________________________________________答案 12 bacbadbaebcabcdbcebdabdcbdebeabecbed解析 画出树形图如下:可知共12个,它们分别是bacbadbaebcabcdbcebdabdcbdebeabecbed.7.车展期间,某调研机构准备从5人中选3人去调查E1馆、E3馆、E4馆的参观人数,则不同的安排方法种数为________答案 60解析 由题意可知,本题为从5个元素中选3个元素的排列问题,所以安排方法有5×4×360()8.一次演出,因临时有变化,拟在已安排好的4个节目的基础上再添加2个小品节目,且2个小品节目不相邻,则不同的添加方法共有________种.答案 20解析 从原来4个节目形成的5个空中选2个空排列,共有5×420()添加方法.9.写出下列问题的所有排列:(1)北京、广州、南京、天津4个城市相互通航,应该有多少种机票?(2)两名老师和两名学生合影留念,写出老师不在左端且相邻的所有可能的站法,并回答共有多少种? (1)列出每一个起点和终点情况,如图所示.故符合题意的机票种类有:北京广州,北京南京,北京天津,广州南京,广州天津,广州北京,南京天津,南京北京,南京广州,天津北京,天津广州,天津南京,共12种.(2)由于老师不站左端,故左端位置上只能安排学生.设两名学生分别为AB,两名老师分别为MN,此问题可分两类:由此可知,所有可能的站法为AMNBANMBABMNABNMBMNABNMABAMNBANM,共8种.10.用一颗骰子连掷三次,投掷出的数字顺序排成一个三位数,此时:(1)各位数字互不相同的三位数有多少个?(2)可以排出多少个不同的三位数? (1)三位数的每位上数字均为1,2,3,4,5,6之一.第一步,得首位数字,有6种不同结果;第二步,得十位数字,有5种不同结果;第三步,得个位数字,有4种不同结果.故可得各位数字互不相同的三位数有6×5×4120()(2)三位数,每位上数字均可从1,2,3,4,5,6六个数字中得一个,共有这样的三位数有6×6×6216()11.由1,2,3,4这四个数字组成的首位数字是1,且恰有三个相同数字的四位数的个数为(  )A9  B12  C15  D18答案 B解析 本题要求首位数字是1,且恰有三个相同的数字,用树形图表示为:由此可知共有12个符合题意的四位数.12.将4张相同的博物馆的参观票分给5名同学,每名同学至多1张,并且票必须分完,那么不同的分法的种数为(  )A54   B45C5×4×3×2   D5答案 D解析 由于参观票只有4张,而人数为5人,且每名同学至多1张,故一定有1名同学没有票.因此从5名同学中选出1名没有票的同学,有5种选法.又因为4张参观票是相同的,不加以区分,所以不同的分法有5种.13.三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有(  )A4  B5  C6  D12答案 C解析 若甲先传给乙,则有甲甲,甲甲,甲3种不同的传法;同理,甲先传给丙也有3种不同的传法,故共有6种不同的传法.14.现从8名学生干部中选出3名同学分别参加全校资源生态环保三个夏令营活动,则不同的选派方案的种数是________答案 336解析 8名学生干部中选出3名同学排列的种数为8×7×6336,故共有336种不同的选派方案.15.用0,1,2,39十个数字可组成不同的:(1)三位数________个;(2)无重复数字的三位数________个;(3)小于500且无重复数字的三位奇数________个.答案 (1)900 (2)648 (3)144解析 (1)由于0不能在百位,所以百位上的数字有9种选法,十位与个位上的数字均有10种选法,所以不同的三位数共有9×10×10900()(2)百位上的数字有9种选法,十位上的数字有除百位上的数字以外的9种选法,个位上的数字应从剩余8个数字中选取,所以共有9×9×8648()无重复数字的三位数.(3)小于500的无重复数字的三位奇数,应满足的条件是:首位只能从1,2,3,4中选,个位必须为奇数,按首位分两类:第一类,首位为13时,个位有4种选法,十位有8种选法,所以共有4×8×264()第二类,首位为24时,个位有5种选法,十位有8种选法,所以共有5×8×280()由分类加法计数原理知,共有6480144()16.某药品研究所研制了5种消炎药a1a2a3a4a5,4种退热药b1b2b3b4,现从中取两种消炎药和一种退热药同时进行疗效试验,但a1a2两种药或同时用或同时不用,a3b4两种药不能同时使用,试写出所有不同试验方法. 如图,由树形图可写出所有不同试验方法如下:a1a2b1a1a2b2a1a2b3a1a2b4a3a4b1a3a4b2a3a4b3a3a5b1a3a5b2a3a5b3a4a5b1a4a5b2a4a5b3a4a5b4,共14种.

    英语朗读宝
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map