终身会员
搜索
    上传资料 赚现金

    第11章 三角形 人教版八年级数学上册压轴题训练(含答案)

    立即下载
    加入资料篮
    第11章 三角形 人教版八年级数学上册压轴题训练(含答案)第1页
    第11章 三角形 人教版八年级数学上册压轴题训练(含答案)第2页
    第11章 三角形 人教版八年级数学上册压轴题训练(含答案)第3页
    还剩53页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第11章 三角形 人教版八年级数学上册压轴题训练(含答案)

    展开

    第11章 三角形 压轴题训练1.如图1的图形我们把它称为“8字形”,显然有;阅读下面的内容,并解决后面的问题:(1)如图2,AP、CP分别平分、,若,,求的度数;(2)①在图3中,直线AP平分的外角,CP平分的外角,猜想与、的关系,并说明理由.②在图4中,直线AP平分的外角,CP平分的外角,猜想与、的关系,直接写出结论,无需说明理由.③在图5中,AP平分,CP平分的外角,猜想与、的关系,直接写出结论,无需说明理由.2.如图,在中,,D为射线上一点,过点D作于点E.(1)如图①,当点在线段上时,请直接写出与的数量关系;(2)如图②,当点在的延长线上时,交的延长线于点,探究与的数量关系,并说明理由;(3)在()的条件下,若点为线段上一点,过点作于点,连接,且,,延长,交于点,求的度数.3.如图,直线MN的同侧放置着角度分别为45°、45°、90°的三角板OAB和角度分别为30°、60°、90°的三角板OCD.点A、O、C在直线MN上,点O、B、D三点共线,OA=OB=OC=3cm.(1)如图1,连接BC,则∠BCD=_________.(2)如图2,把三角板OAB向右沿NM方向平移1cm得△,交OD于点G,求四边形的面积.(3)如图3,三角板OAB绕着点O旋转,当ABMN时,AB与OD交于点H,在OA上取一点P,∠PHO的角平分线HQ与线段BO的延长线交于点Q,试探索∠AHP与∠HQB的数量关系,并说明理由.(4)如图4,若将图1中的三角板OAB绕着点O以每秒5°的速度顺时针旋转一周,当边OA或OB与边CD平行时,求旋转时间t的值.4.如图,已知ABCD,直线MN交AB于点M,交CD于点N.点E是线段MN上一点,P,Q分别在射线MA,NC上,连接PE,QE,PF平分∠MPE,QF平分∠CQE.(1)如图1,若PE⊥QE,∠EQN=64°,则∠MPE= °,∠PFQ= °.(2)如图2,求∠PEQ与∠PFQ之间的数量关系,并说明理由.(3)如图3,当PE⊥QE时,若∠APE=150°,∠MND=110°,过点P作PH⊥QF交QF的延长线于点H.将直线MN绕点N顺时针旋转,速度为每秒5°,直线MN旋转后的对应直线为,同时△FPH绕点P逆时针旋转,速度为每秒10°,△FPH旋转后的对应三角形为△,当直线MN首次落到CD上时,整个运动停止.在此运动过程中,经过t秒后,直线恰好平行于△的一条边,请直接写出所有满足条件的t的值.5.如图,在中,点D在上,过点D作,交于点E,平分,交的平分线于点P,与相交于点G,的平分线与相交于点Q.(1)若,则____________,____________;(2)若,当的度数发生变化时,的度数是否发生变化?并说明理由;(3)若,则____________,____________;(用含x的代数式表示);(4)若中存在一个内角等于另一个内角的三倍,请直接写出所有符合条件的的度数.6.在平面直角坐标系中,,,直角三角形的边与轴分别相交于、两点,与直线分别交于、点,.(1)将直角三角形如图位置摆放,如果,则______;(2)将直角三角形如图位置摆放,为上一点,①若,请直接写出与之间的等量关系:______;②若,请判断与之间的等量关系,并说明理由.(3)将直角三角形如图位置摆放,若,延长交于点,点是射线上一动点,探究,与的数量关系,请直接写出结论题中的所有角都大于小于:______.7.在中,(1)如图(1),、的平分线相交于点.①若,求的度数.②若,则_________.(2)如图(2),在中的外角平分线相交于点,,求的度数.(3)如图(3),的、的平分线相交于点,它们的外角平分线相交于点.请回答:与具有怎样的数量关系?并说明理由.8.(1)如图1,∠A=70°,BP、CP分别平分∠ABC和∠ACB,则∠P的度数是  .(2)如图2,∠A=70°,BP、CP分别平分∠EBC和∠FCD,则∠P的度数是  .(3)如图3,∠A=70°,BP、CP分别平分∠ABC和∠ACD,求∠P的度数.9.如图,,点A、分别在、上运动(不与点重合).(1)若是的平分线,的反方向延长线与的平分线交于点.①若,则______;②猜想:的度数是否随A,的移动发生变化?并说明理由.(2)如图,若,,则______;(3)若将改为(如图3),,,其余条件不变,则______(用含,的代数式表示,其中).10.(1)如图1,F是OC边上一点,求证:∠AFC=∠AOC+∠OAF;(2)如图2,∠AOB=36°,OC平分∠AOB,点D、E在射线OA、OC上,点P是射线OB上的一个动点,连接DP交射线OC于点F.设∠EDP=x,若DE⊥OA,是否存在这样的x使得∠EFD=3∠EDF?若存在,求出x;若不存在,说明理由;(3)在(2)的条件下,若射线DA绕点D顺时针旋转至DO后立即回转,射线EO绕点E顺时针旋转至ED停止,射线DA转动的速度是4.5°/s,射线EO转动的速度是1°/s.若射线DA先旋转2s,射线EO才开始绕点E顺时针旋转,在射线EO到达ED之前,射线EO旋转到第________s时,射线DA与射线EO互相平行.11.已知AD∥BC,∠ADB=28°,点E在直线BD上,点F在射线BC上,E不与B、D重合,F不与B、C重合.(1)如图1,当点E在线段BD的延长线上,点F在线段BC上时,连EF,求证:∠EFB+∠DEF=152°;(2)如图2,当点E在直线DB上运动,点F在线段BC上时,连EF,探究∠EFB与∠DEF之间的数量关系,并说明理由;(3)如图3,当点E在线段BD延长线上,点Q在线段BC延长线上,点F在射线BC上,且点Q在点F的右侧时,直线DP平分∠ADE,直线FP平分∠EFQ,DP、FP交于点P,直接写出∠DEF和∠DPF的关系.12.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动.  (1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,AD、BC的延长线交于点F,点A、B在运动的过程中,∠F= ;DE、CE又分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小也不发生变化,其大小为∠CED= .(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于E、F,则∠EAF= ;在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.13.如图1,直线GH分别交AB,CD于点E,F(点F在点E的右侧),若∠1+∠2=180°.(1)求证:ABCD;(2)如图2所示,点M、N在AB,CD之间,且位于E,F的异侧,连MN,若2∠M=3∠N,则∠AEM,∠NFD,∠N三个角之间存在何种数量关系,并说明理由.(3)如图3所示,点M在线段EF上,点N在直线CD的下方,点P是直线AB上一点(在E的左侧),连接MP,PN,NF,若∠MPN=2∠MPB,∠NFH=2∠HFD,则请直接写出∠PMH与∠N之间的数量.14.【问题背景】(1)如图1的图形我们把它称为“8字形”,请说明;【简单应用】(2)阅读下面的内容,并解决后面的问题:如图2,AP、CP分别平分∠BAD,∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数;解:∵AP、CP分别平分∠BAD,∠BCD∴∠1=∠2,∠3=∠4由(1)的结论得:①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D∴∠P =(∠B+∠D)=26°.①【问题探究】如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想的度数,并说明理由. ②【拓展延伸】在图4中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为: (用α、β表示∠P),并说明理由. 15.如图1,在平面直角坐标系中,,过C作轴于B.(1)如图1,则三角形的面积_____________;(2)如图2,若过B作交y轴于D,则的度数为_____________;若分别平分,求的度数;(3)若线段与y轴交点M坐标为,在y轴上是否存在点P,使得三角形和三角形的面积相等?若存在,求出P点坐标;若不存在,请说明理由.16.如图,已知点E在四边形ABCD的边BC的延长线上,BM、CN分别是∠ABC、∠DCE的角平分线,设∠BAD=α,∠ADC=β.(1)如图1,若α+β=180°,判断BM、CN的位置关系,并说明理由:(2)如图2,若α+β>180°,BM、CN相交于点O.①当α=70°,β=150°时,则∠BOC=_______;②∠BOC与α、β有怎样的数量关系?说明理由.(3)如图3,若α+β<180°,BM、CN的反向延长线相交于点O,则∠BOC=______.(用含α、β的代数式表示).17.已知:直线,动点在直线上运动,探究,,之间的关系.(1)【问题发现】若,,求的度数.(2)【结论猜想】当点在线段上时,猜想,,三个角之间的数量关系,并说明理由.(3)【拓展延伸】若点在射线上或者在射线上时(不包括端点),试着探究,,之间的关系是否会发生变化,请挑选一种情形画出图形,写出结论,并说明理由.18.中,,点D,E分别是边AC,BC上的点,点P是一动点,令,,.初探:(1)如图1,若点P在线段AB上,且,则_____________;(2)如图2,若点P在线段AB上运动,则∠1,∠2,之间的关系为_____________;(3)如图3,若点P在线段AB的延长线上运动,则∠1,∠2,之间的关系为_____________;再探:如图4,若点P运动到的内部,写出此时∠1,∠2,之间的关系,并说明理由.19.如图,AB、CD被AC所截,,∠CAB=108°,点P为直线AB上一动点(不与点A重合),连CP,作∠ACP和∠DCP的平分线分别交直线AB于点E、F.(1)当点P在点A的右侧时①若∠ACP=36°,则此时CP是否平分∠ECF,请说明理由.②求∠ECF的度数.在点P运动过程中,直接写出∠APC与∠AFC之间的数量关系.20.已知,如图,ABCD,直线交于点,交于点点是线段上一点,,分别在射线,上,连接,,平分,平分.(1)如图,当时,______;(2)如图,猜想与之间的数量关系,并说明理由;(3)如图,在问的条件下,若,,过点作交的延长线于点将绕点顺时针旋转,速度为每秒,直线旋转后的对应直线为,同时绕点逆时针旋转,速度为每秒,旋转后的对应三角形为,当首次落到上时,整个运动停止.在此运动过程中,经过秒后,恰好平行于的其中一条边,请直接写出所有满足条件的的值. 参考答案:1.(1)(2)①,理由见解析;②;③【分析】(1)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠P+∠3=∠1+∠ABC,∠P+∠2=∠4+∠ADC,相加得到2∠P+∠2+∠3=∠1+∠4+∠ABC+∠ADC,继而得到2∠P=∠ABC+∠ADC,代入数据得∠P的值;(2)①按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠PAD+∠P=∠PCD+∠D,∠PAB+∠P=∠4+∠B,分别用∠2,∠3表示出∠PAD和∠PCD,再整理即可得解;②按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠BAP+∠P+∠4+∠B=360°,∠2+∠P+∠PCD+∠D=360°,分别用∠2,∠3表示出∠BAP和∠PCD,再整理即可得解;③按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠BAD+∠B=∠BCD+∠D,∠2+∠P=∠PCD+∠D,分别用∠2,∠3表示出∠BAD、∠BCD和∠PCD,再整理即可得解;(1)解:∵AP、CP分别平分∠BAD、∠BCD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,由(1)的结论得:∠P+∠3=∠1+∠ABC①,∠P+∠2=∠4+∠ADC②,①+②,得2∠P+∠2+∠3=∠1+∠4+∠ABC+∠ADC,∴2∠P=∠ABC+∠ADC,∴∠P=(∠ABC+∠ADC)=(36°+16°)=26°.(2),理由如下:①∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4.由(1)的结论得:∠PAD+∠P=∠PCD+∠D③,∠PAB+∠P=∠4+∠B④,∵∠PAB=∠1,∠1=∠2,∴∠PAB=∠2,∴∠PAD=∠PAB+∠BAD=∠2+180°-2∠2=180°-∠2,∴∠2+∠P=∠3+∠B⑤,③+⑤得∠2+∠P+∠PAD+∠P=∠3+∠B+∠PCD+∠D,∴∠2+∠P+180°-∠2+∠P=∠3+∠B+180°-∠3+∠D即2∠P+180°=∠B+∠D+180°,∴.②,理由如下:如图4,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∠BAD=180°﹣2∠1,∠BCD=180°﹣2∠3,由题干可知:∠BAD+∠B=∠BCD+∠D,∴(180°﹣2∠1)+∠B=(180°﹣2∠3)+∠D,在四边形APCB中,∠BAP+∠P+∠3+∠B=360°,即(180°﹣∠2)+∠P+∠3+∠B=360°,⑥在四边形APCD中,∠2+∠P+∠PCD+∠D=360°,即∠2+∠P+(180°﹣∠3)+∠D=360°,⑦⑥+⑦得:2∠P+∠B+∠D+∠2﹣∠2+∠3﹣∠3=360°∴2∠P+∠B+∠D=360°,∴;③,理由如下:如图5,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,由题干结论得:∠BAD+∠B=∠BCD+∠D,即2∠2+∠B=(180°﹣2∠3)+∠D⑧,∠2+∠P=∠PCD+∠D,即∠2+∠P=(180°﹣∠3)+∠D⑨,⑨×2﹣⑧得:2∠P﹣∠B=180°+∠D,∴.【点评】本题考查了三角形的内角和定理,角平分线的定义,准确识图并运用好“8”字形的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.2.(1)∠BAC=2∠EDC(2)∠BAC=2∠EDC,理由见解析(3)∠EKA=18°【分析】(1)如图1中,作AH⊥BC于H,利用等腰三角形的性质,等角的余角相等解决问题即可;(2)作AM⊥BC于M,由(1)同理可证∠BAC=2∠EDC;(3)如图2中,设∠C=∠FAC=∠ABC=x,则∠BAF=∠BFA=2x,构建方程求出x即可解决问题.(1)如图1中,作AH⊥BC于H,∵,∴∠BAC=2∠CAH.∵DE⊥AC,∴∠AHC=∠DEC=90°,∴∠C+∠CAH=90°,∠C+∠CDE=90°,∴∠CAH=∠CDE,∴∠BAC=2∠EDC.(2)结论:∠BAC=2∠EDC.理由如下:如图2中,作AM⊥BC于M,∵AB=AC,∴∠BAC=2∠CAM.∵DE⊥AC,∴∠AMC=∠DEC=90°,∴∠C+∠CAM=90°,∠C+∠CDE=90°,∴∠CAM=∠CDE,∴∠BAC=2∠EDC.(3)∵∠AFG=∠CFG,FG⊥AC,∴∠FAC=∠C.设∠C=∠FAC=∠ABC=x,∴∠BAF=∠BFA=2x.在△BAF中,∠BAF+∠BFA+∠ABC=180°,∴2x+2x+x=180°,解得:x=36°,∴∠EAK=∠ABC+∠C=36°+36°=72°.∵KE⊥EC,∴∠E=90°,∴∠EKA=90°−∠EAK=18°.【点评】本题考查等腰三角形的判定及性质,等角的余角相等,三角形内角和定理,直角三角形两锐角互余,三角形外角的性质等知识.解题的关键是学会利用参数构建方程解决问题.3.(1)15(2)四边形的面积=(2+3) ×1=2.5;(3)∠AHP=2∠HQB;(4)旋转时间t的值为12或30或48或66秒.【分析】(1)求得∠OBC =∠BCO=45°,利用角的和差即可求解;(2)求得AO= GO=3-1=2(cm),利用梯形面积公式即可求解;(3)由角平分线的定义得到并设∠PHQ=∠QHO=α,推出∠AHP+2α=90°,∠HQB+α=∠BOH=45°,消去α即可求解;(4)分四种情况讨论,画出图形,利用解方程的方法求解即可.(1)解:∵OA=OB=OC=3cm,∠AOB=∠BOC=90°,∠DCO=60°,∴∠OBC =∠BCO=45°,∴∠BCD=∠DCO-∠BCO=15°,故答案为:15;(2)解:∵=1cm,∠GAO=45°,∴AO= GO=3-1=2(cm),∴四边形的面积=(2+3) ×1=2.5();(3)解:∠AHP=2∠HQB,理由如下:∵HQ平分∠PHO,∴∠PHQ=∠QHO,设∠PHQ=∠QHO=α,∵ABMN,∴∠BOC=∠B=45°,∠AHO=∠HOC=90°,∴∠BOH=45°,∴∠AHP+2α=90°,∠HQB+α=∠BOH=45°, ∴∠AHP+2α=2∠HQB+2α=90°,∴∠AHP=2∠HQB;(4)解:由题意得旋转的角度为5t,当OACD时,如图:∴∠AOD=∠D=30°,∠AON=90°-30°=60°,∴5t=60,解得:t=12(秒);当OBCD时,如图:∴∠BOC=∠DCO=60°,∴∠AOC=90°-60°=30°,∴∠AON=180°-30°=150°,∴5t=150,解得:t=30(秒);当OACD时,如图:∴∠AOC=∠DCO=60°,∴5t=180+60,解得:t=48(秒);当OBCD时,如图:∴∠BON=∠DCO=60°,∴∠AON=90°-60°=30°,∴5t=360-30,解得:t=66(秒);综上,当边OA或OB与边CD平行时,旋转时间t的值为12或30或48或66秒.【点评】本题目考查了平行线的性质,旋转的速度,角度,时间的关系,应用方程的思想是解决问题的关键.掌握分类思想,注意不能漏解.4.(1)26;135;(2)2∠PFQ-∠PEQ=180°,理由见解析;(3)t=或或.【分析】(1)延长PE交CD于G,设PE,FQ交于点H,设∠MPE=2α,则∠FPE=∠BPE=α,根据ABCD可表示出∠PGQ,进而根据三角形内角和推论表示出∠EQC,进而表示出∠EQH,然后结合△EQH和△PFH内角和得出关系式,进一步得出结果;(2)类比(1)的方法过程,得出结果;(3)分为△的三边分别与平行,分别画出图形求解即可.【详解】解:(1)如图1,延长PE交CD于G,设PE,FQ交于点H,设∠BPE=2α,则∠FPE=∠BPE=α,∵AB∥CD,∴∠PGQ=∠BPE=2α,∵PE⊥QE,∴∠QEH=QEG=90°,∴∠EQC=∠QEG+∠PGQ=90°+2α,∴∠EQH=∠EQC=45°+α,∵∠EQN=64°,∴∠EGQ=26°,∴∠BPE=26°.在△EQH和△PFH中,∵∠HEQ+∠HQE+∠EHQ=180°,∠FPH+∠FHP+∠PFH=180°,∠PHF=∠EHQ,∴∠HEQ+∠HQE=∠FPH+∠PFH,即:90°+45°+α=α+∠PFH,∴∠PFH=135°,故答案为:26;135;(2)2∠PFQ-∠PEQ=180°,理由如下:如图1,延长PE交CD于G,设PE,FQ交于点H,设∠BPE=2α,则∠FPE=∠BPE=α,∵ABCD,∴∠PGQ=∠BPE=2α,∵∠GEQ=180°-∠PEQ,∴∠EQC=∠QEG+∠PGQ=180°-∠PEQ+2α,∴∠HQE=∠EQC=90°+α-∠PEQ,在△EQH和△PFH中,∵∠PEQ+∠HQE+∠EHQ=180°,∠FPH+∠FHP+∠PFH=180°,∠PHF=∠EHQ,∴∠PEQ+∠HQE=∠FPH+∠PFH,即:∠PEQ+90°+α-∠PEQ=α+∠PFQ∴2∠PFQ-∠PEQ=180°;(3)根据题意,需要分三种情况:∵∠APE=150°,∴∠BPE=30°,∵PF平分∠MPE,∴∠FPE=∠BPF=15°,由(2)得2∠PFQ-∠PEQ=180°,又∠PEQ=90°,∴∠PFQ =135°,∴∠HPF=45°,∴∠HPB=30°,由题意得∠=10t,则∠=30+10t,∠=5t,则∠=110-5t,设与AB的交点为I,则∠=∠,如图3(1),当时,∠=∠=∠, 110-5t=30+10t,∴t=,如图3(2),当时,∠=10t,则∠=30+10t,∴∠=∠-∠=90-(180-10t-30),同理∠=∠,∴90-(180-10t-30)=110-5t,∴t=,如图3(3),当时,∠=10t,则∠=5t-15,∴∠=∠,∴110-5t=10t-15,∴t=,综上所述:t=或或.【点评】本题考查了平行线的判定和性质,三角形内角和定理及其推论,四边形内角和等知识,解决问题的关键是正确分类,并找出相等关系列方程.5.(1)115,25(2)不发生变化,理由见解析(3),(4)45°,60°,120°,135°【分析】(1)由平行线的性质,角平分线的定义结合三角形内角和定理即可求解;(2)同理由平行线的性质,角平分线的定义结合三角形内角和定理即可求解;(3)将(2)中换成,同理即可求解;(4)设,由(3)可知,.再由不变,即可分类讨论①当时,②当时,③当时和④当时,分别列出关于x的等式,解出x即可.(1)∵,∴.∵平分,∴.∵,∴,.∵平分,∴.∴;∵,∴.∵CP平分,CQ平分, ∴,.∵,∴,即,∴.故答案为:115,25;(2)当的度数发生变化时,、的度数不发生变化理由如下:∵,∴.∵,∴,.∵平分,平分,∴,.∴.∴由(1)可知不变,∴.∴当的度数发生变化时,、的度数不发生变化;(3)∵,∴.∵,∴,.∵平分,平分,∴,.∴.∴.由(1)可知不变,∴.故答案为:,;(4)设,由(3)可知,.∵,∴可分类讨论:①当时,∴,解得:,∴;②当时,∴,解得:,∴;③当时,∴, 解得:,∴;④当时,∴, 解得:,∴.综上可知或或或.【点评】本题考查平行线的性质,角平分线的定义,三角形内角和定理等知识.利用数形结合和分类讨论的思想是解题关键.6.(1)(2)①;②,见解析(3)或【分析】(1)过点作,可得轴,则,,结合,可得,即可得出答案.(2)①过点作轴,可得轴,则,,结合已知条件与邻补角的定义可得,根据,可得,结合,可得出答案.②由轴,可得,,结合已知条件与邻补角的定义可得,最后由,可得出答案.(3)当点在上时,或当点在线段的延长线上时,分别利用平行线的性质可得出答案.(1)解:过点作, ,,轴,轴,,,,,,,.故答案为:.(2)解:①过点作轴, 轴,,,,,,,,,,整理得.故答案为:..理由如下:轴,,,,,,,.(3)解:当点在上时,过点作, ,,,,.当点在线段的延长线上时, ,,,,,.故答案为:或.【点评】本题考查平行线的判定与性质、角的计算及坐标与图形,能够添加恰当的辅助线是解答本题的关键.7.(1)①;②;(2);(3)【分析】(1)①运用三角形的内角和定理及角平分线的意义,首先求出,进而求出,即可解决问题;②方法同①;(2)根据三角形的外角性质分别表示出和,再根据角平分线的性质求出,最后根据三角形内角和定理即可求解;(3)由(1)得,由(2)可得,两式相加即可得到结论.(1)解:①∵∠A=64°,∴∠ABC+∠ACB=116°,∵∠ABC、∠ACB的平分线相交于点P,∴,∴,∴,②∵∠A=n°,∴∠ABC+∠ACB=180°-n° ,∵∠ABC、∠ACB的平分线相交于点P,  ∴,∴,∴,故答案为:;(2)解:∵外角和的平分线相交于点Q,∴∴,∵ ,∴,(3)解:由(1)得,由(2)可得,∴【点评】本题主要考查了三角形内角和定理、外角的性质,角平分线定义等知识,灵活运用三角形内角和定理、外角的性质是解答本题的关键.8.(1)125°(2)55°(3)35°【分析】(1)根据三角形的内角和定理,角平分线的性质即可求解;(2)应用角平分线的性质,补角的概念即可求解;(3)综合(1)、(2)解题思路即可求解;【详解】解:(1)∵BP、CP分别平分∠ABC和∠ACB,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠PBC+∠PCB=(∠ABC+∠ACB),=×(180°﹣∠A)=55°,∴∠P=180°﹣(∠PCB+∠PBC)=125°,故答案为:125°.(2)∵∠EBC=∠A+∠ACB,∠FCB=∠A+∠ABC,∴∠EBC+∠FCB=∠A+∠ACB+∠A+∠ABC,=180°+70°=250°,∵BP、CP分别平分∠EBC和∠FCB,∴∠PBC=∠EBC,∠PCB=∠FCB,∴∠PBC+∠PCB=(∠EBC+∠FCB),=125°,∴∠P=180°﹣(∠PBC+∠PCB)=55°,故答案为:55°.(3)∠ACD=∠A+∠ABC,∵CP平分∠ACD,BP平分∠ABC,∴∠PBC=∠ABC,∠PCA=∠ACD=∠A+∠ABC,∵∠P=180°﹣(∠PBC+∠PCA+∠ACB),=∠A=35°,即∠P等于∠A的一半,答:∠P的度数是35°.【点评】本题主要考查三角形的内角和定理,三角形外角的性质,角平分线的性质,掌握相关知识并灵活应用是解题的关键.9.(1)①;②不随A,的移动发生变化,理由见解析(2)(3)【分析】(1)①先利用角平分线的定义求出,利用三角形内角和定理可得,即可得到,利用角平分线的定义可得,即可求解;②设,证明过程与①类似;(2)设,解题过程与(1)类似;(3)与(1)(2)类似,设出的度数,再进行推导即可.(1)解:①,平分,,,,,是的平分线,,,,,故答案为:;②的度数不随,的移动发生变化,理由如下:设,平分,,,,,是的平分线,,,,,的度数不随,的移动发生变化;(2)解:设,,,,,,,,,,,,,故答案为:;(3)解:设,,,,,,,,,,,,,故答案为:.【点评】本题考查三角形内角和定理,列代数式,角的计算等知识点,解题的关键是熟练掌握三角形内角和定理.10.(1)见解析;(2)存在,当x=27°或18°时,∠EFD=3∠EDF;(3)或.【分析】(1)根据三角形的内角和定理与平角的定义证明即可;(2)求出∠AOC=18°,然后分情况讨论:①若DP在DE左侧,求出∠FED=72°,根据三角形内角和定理可得x+3x+72°=180°,解方程可得x的值;②若DP在DE右侧,求出∠DEO=72°,根据三角形外角的性质可得x+3x=72°,解方程可得x的值;(3)分两种情况进行讨论:DP在DE左侧,DP在DE右侧,分别根据平行线的性质,列方程求解即可.【详解】(1)证明:由三角形的内角和定理可得:∠OAF+∠AOC+∠AFO=180°,∵∠AFC+∠AFO=180°,∴∠AFC=∠AOC+∠OAF;(2)解:存在这样的x的值,使得∠EFD=3∠EDF.∵∠AOB=36°,OC平分∠AOB,∴∠AOC=∠BOC=18°,分两种情况:①如图,若DP在DE左侧,∵DE⊥OA,∴∠FED=90°−18°=72°,∴x+3x+72°=180°,解得x=27°;②如图,若DP在DE右侧,∵DE⊥OA,∴∠DEO=90°−18°=72°,∵∠DEO=∠EDF+∠EFD,∴x+3x=72°,解得x=18°;综上所述,当x=27°或18°时,∠EFD=3∠EDF;(3)解:分两种情况:①当射线DA向DO旋转时,如图,当时,∠1=∠2,设射线EO旋转的时间为t秒,则∠1=(72−t)°,∠2=90−4.5(t+2)=(81-4.5t)°,∴72−t=81-4.5t,解得t=;②当射线DA由DO回转时,如图,当时,∠1=∠2,设射线EO旋转时间为t秒,则∠1=(72−t)°,∠2=4.5(t+2)−270=(4.5t-261)°,∴72−t=4.5t-261,解得t=;综上,射线EO旋转到第或s时,射线DA与射线EO互相平行,故答案为:或.【点评】本题考查了三角形内角和定理,三角形外角的性质,平行线的性质,一元一次方程的应用等知识,掌握三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和是解题的关键,另外在解题时注意分类讨论思想的运用.11.(1)见详解(2)当E点线段BD的延长线上时,∠EFB+∠DEF=152°;当E点在线段BD上(不含端点)时,∠DEF-∠EFB=28°;当E点在线段DB的延长线上时,∠DEF+∠EFB=28°,理由见详解(3)2∠DPF-∠DEF=180°,理由见详解【分析】(1)根据,可得∠ADB=∠DBF,再根据三角形内角和定理即可求证;(2)根据E点位置不同,分当E点线段BD的延长线上时、当E点在线段BD上(不含端点)时、当E点在线段DB的延长线上时,三种情况讨论,利用三角形的外角的定义与性质即可求解;(3)设DP交EF于点N,M点是PD延长线上的一点,延长DP交BQ于点G,根据DP平分∠ADE,可得∠ADM=∠EDM=76°,在根据,可得∠PGF=∠ADM,由PF平分∠EFQ,得到∠PFG=∠EFQ,再根据三角形的外角的定义与性质有∠DPF=∠PGF+∠PFG,∠DBF+∠DEF=∠EFQ,即可求解.(1)∵,∴∠ADB=∠DBF,∵∠ADB=28°,∴∠DBF=28°,∵∠DBF+∠EFB+∠DEF=180°,∴∠EFB+∠DEF=180°-∠DBF=180°-28°=152°,得证;(2)根据E点位置不同,∠EFB与∠DEF之间的数量关系也不同,当E点线段BD的延长线上时,∠EFB+∠DEF=152°;当E点在线段BD上(不含端点)时,∠DEF-∠EFB=28°;当E点在线段DB的延长线上时,∠DEF+∠EFB=28°,理由如下,分情况讨论,第一种情况,当E点线段BD的延长线上时,根据(1)的结果可知:∠EFB+∠DEF=152°;第二种情况,当E点在线段BD上(不含端点)时,如图,∵∠EFB+∠DBF=∠DEF,又∵∠DBF=28°,∴∠EFB+28°=∠DEF,∴∠DEF-∠EFB=28°,此时数量关系为:∠DEF-∠EFB=28°;第三种情况,当E点在线段DB的延长线上时,如图,∵∠EFB+∠DEF=∠DBF,又∵∠DBF=28°,∴∠EFB+∠DEF=∠DBF=28°,∴∠EFB+∠DEF=28°,此时数量关系为:∠DEF+∠EFB=28°;(3)2∠DPF-∠DEF=180°,理由如下,设DP交EF于点N,M点是PD延长线上的一点,延长DP交BQ于点G,如图,∵∠ADB=28°,∴∠ADE=180°-28°=152°,∵DP平分∠ADE,∴∠ADM=∠EDM=∠ADE=76°,∵,∴∠PGF=∠ADM=76°,∵PF平分∠EFQ,∴∠PFG=∠EFQ,∵∠DPF=∠PGF+∠PFG,∠PGF=76°,∴∠DPF=76°+∠EFQ,∵∠DBF=28°,∠DBF+∠DEF=∠EFQ,∴∠DPF=76°+∠EFQ=76°+(28°+∠DEF),∴2∠DPF-∠DEF=180°,得证.【点评】本题主要考查了平行线的性质、三角形的外角定义及性质、角平分线的性质等知识.注重分类讨论的思想是解答本题的关键.12.(1)不变,∠AEB=135°;(2)45°,67.5°;(3)90°;∠ABO的度数为60°或45°.【分析】(1)先求出∠BAO+∠ABO=90°,结合角平分线的定义可得∠BAE+∠ABE=45°,再利用三角形的内角和定理可求解∠AEB的度数;(2)由平角的定义求出∠BAP+∠ABM=270°,利用角平分线的定义可求∠DAB+∠ABC=135°,利用三角形的内角和定理可求出∠F,然后根据四边形的内角和定理可得∠ADC+∠BCD=225°,再由角平分线的定义及三角形的内角和定理可求解;(3)先求出∠EAF=90°,∠ABO=2∠E,然后根据△AEF中,有一个角是另一个角的3倍分4种情况求解即可.(1)解:不变,∵MN⊥PQ,∴∠AOB=90°,∵∠AOB+∠BAO+∠ABO=180°,∴∠BAO+∠ABO=90°,∵AE平分∠BAO,BE平分∠ABO,∴∠BAE=∠BAO,∠ABE=∠ABO,∴∠BAE+∠ABE=45°,∵∠BAE+∠ABE+∠AEB=180°,∴∠AEB=135°;(2)∵∠ABO+∠BAO=90°,∴∠BAP+∠ABM=180°+180°−90°=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠DAB=∠BAP,∠ABC=∠ABM,∴∠DAB+∠ABC=135°,∴∠F=180°-∠DAB-∠ABC=45°,又∵∠DAB+∠ABC+∠ADC+∠BCD=360°,∴∠ADC+∠BCD=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE=∠ADC,∠DCE=∠BCD,∴∠CDE+∠DCE=112.5°,∴∠CED=180°-∠CDE-∠DCE=67.5°,故答案为:45°,67.5°;(3)∵AE平分∠BAO,AF平分∠OAG,∴∠EAO=∠BAO,∠FAO=∠OAG,∵∠BAO+∠OAG=180°,∴∠EAO+∠FAO=90°,即∠EAF=90°,∵OE平分∠BOQ,∴∠BOQ=2∠EOQ,∵∠EOQ=∠E+∠OAE,∠BOQ=∠ABO+∠BAO,∴∠ABO=2∠E,在△AEF中,∵有一个角是另一个角的3倍,故有4种情况:①∠EAF=3∠E=90°时,则∠E=30°,∠ABO=60°;②∠EAF=3∠F=90°时,则∠F=30°,∴∠E=90°-30°=60°,∴∠ABO=120°,(不合题意,舍去);③∠F=3∠E时,∵∠E+∠F=90°,∴∠E=22.5°,∴∠ABO=45°;④∠E=3∠F时,∵∠E+∠F=90°,∴∠E=67.5°,∴∠ABO=135°,(不合题意,舍去);综上,∠ABO的度数为60°或45°.故答案为:90°.【点评】本题主要考查了三角形的内角和定理,角平分线的定义,三角形外角的性质,四边形的内角和问题,灵活运用三角形的内角和是180°,四边形的内角和是360°来求解角的度数是解题的关键.13.(1)见解析(2),理由见解析(3),理由见解析【分析】(1)根据平行线的判定定理即可得到结论;(2)设,,,,过作,过作,推出,根据平行线的性质得到,,得到,于是得到结论;(3)设,,,,根据平行线的性质得到,由三角形的外角的性质得到,根据平角的定义得到,于是得到结论.(1)解:,,,,;(2)解:设,,,,过作,过作,,,,,,,,,,,;(3)解:,,设,,,,,,,,,,,,.【点评】本题考查了平行线的判定和性质,四边形的内角和,三角形的外角的性质,解题的关键是正确的识别图形.14.(1)见解析;(2)①26°,理由见解析;②∠P=α+β,理由见解析【分析】(1)根据三角形内角和定理即可证明.(2)【问题探究】由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠ADC+(180°-∠3),∠P+∠1=∠ABC+∠4,推出2∠P=∠ABC+∠ADC,即可解决问题.【拓展延伸】由(1)的结论易求∠P+∠PDC=∠C+∠CAP,∠P+∠PAB=∠B+∠BDP,再将已知条件代入化简即可求解∠P.【详解】(1)证明:∵∠A+∠B+∠AEB=180°,∠C+∠D+∠CED=180°,∴∠A+∠B+∠AEB=∠C+∠D+∠CED,∵∠AEB=∠CED,∴∠A+∠B=∠C+∠D;(2)①解∶如图3,∵AP平分∠FAD,CP平分∠BCE∴∠1=∠2,∠3=∠4,∵∠PAD=180°-∠2,∠PCD=180°-∠3,∴由(1)可得:∠P+180°-∠2=∠D+180°-∠3,∠P+∠PAB=∠B+∠4,又∠1=∠PAB,∴∠P+∠1=∠B+∠4,又∠P+180°-∠2=∠D+180°-∠3,∴2∠P+∠1+180°-∠2=∠B+∠4+∠D+180°-∠3,又∠1=∠2,∠3=∠4,∴2∠P=∠B+∠D∴∠P =(∠B+∠D)=26°②解:∠P=α+β.理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠CAB,∠BDP=∠CDB,由(1)可得:∠P+∠PDC=∠C+∠CAP,∠P+∠PAB=∠B+∠BDP,∴∠P+∠CDB =∠C+∠CAB,①∠P+∠CAB=∠B+∠CDB,②①×2+②,得2∠P+∠CDB+∠P+∠CAB=2∠C+∠CAB+∠B+∠CDB,∴3∠P=2∠C+∠B∴∠P==α+β.【点评】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型.15.(1)4;(2)90°,45°;(3)存在,或.【分析】(1)根据题意求出BC=2,AB=OA+OB=4,根据三角形面积公式即可求出三角形的面积为;(2)根据题意求出∠OBD+∠ODB=90°,根据得到∠OBD=∠BAC,即可得到;连接,得到,,,根据三角形内角和为180°和即可求出;(2)设P点坐标为,根据三角形和三角形的面积相等,得到,求出或,问题得解.(1)解:∵, 轴,∴BC=2,AB=OA+OB=4,∴三角形的面积为;故答案为:4(2)解:∵OB⊥OD,∴∠BOD=90°,∴∠OBD+∠ODB=90°,∵∴∠OBD=∠BAC,∴,故答案为:90°;连接,如图2, ∵,分别平分,,∴,,∴,∵,即,而,∴,∴;(3)解:存在.如图3,设P点坐标为,∵三角形和三角形的面积相等,∴,即,即∴或,∴P点坐标为或.【点评】本题考查了平面直角坐标系中点的坐标特点,三角形的内角和,直角三角形两锐角互余等知识,综合性较强,难度较大,理解相关知识并根据题意灵活应用是解题关键.16.(1)BMCN,理由见解析(2)①20°;②,理由见解析(3)【分析】(1)由α+β=180°先判断ABCD,根据平行线的性质得出∠DCE=∠ABC,再由角平分线的性质证得结论;(2)①根据α和β的度数,求出∠ABC+∠BCD,根据角平分线的性质可知,∠ECN=∠DCN,∠CBM=∠ABM,设∠ECN=∠DCN=x,∠CBM=∠ABM=y,利用外角表示∠BOC即可;②根据α和β的度数,求出∠ABC+∠BCD=180°-(α+β),根据角平分线的性质可知,∠ECN=∠DCN,∠CBM=∠ABM,设∠ECN=∠DCN=x,∠CBM=∠ABM=y,利用外角表示∠BOC即可;(3)根据α和β的度数,求出∠ABC+∠BCD=180°-(α+β),根据角平分线的性质可知,∠ECN=∠DCN,∠CBM=∠ABM,设∠ECN=∠DCN=x,∠CBM=∠ABM=y,利用外角表示∠BOC即可.(1)解:CNBM,理由如下:∵α+β=180°,∴ABCD,∴∠DCE=∠ABC,∵BM、CN分别是∠ABC、∠DCE的角平分线,∴∠ECN=∠CBM,∴CNBM;(2)解:①∵α=70°,β=150°,∴∠ABC+∠BCD=360°-70°-150°=140°,∵BM、CN分别是∠ABC、∠DCE的角平分线,∴∠ECN=∠DCN,∠CBM=∠ABM,设∠ECN=∠DCN=x,∠CBM=∠ABM=y,∵∠ECN=∠BOC+∠CBM,∴x=∠BOC+y,∴∠BOC=x-y,∵∠ECD+∠DCB=180°,∴2x+140°-2y=180°,∴x-y=20°,∴∠BOC=20°.故答案为:20°;②∠BOC=,理由如下:∵四边形内角和为360°,∴∠ABC+∠BCD=360°-(α+β),∵BM、CN分别是∠ABC、∠DCE的角平分线,∴∠ECN=∠DCN,∠CBM=∠ABM,设∠ECN=∠DCN=x,∠CBM=∠ABM=y,∵∠ECN=∠BOC+∠CBM,∴x=∠BOC+y,∴∠BOC=x-y,∵∠ECD+∠DCB=180°,∴2x+360°-(α+β)-2y=180°,∴,∴∠BOC=;(3)解:∠BOC=,理由如下:∵四边形内角和为360°,∴∠ABC+∠BCD=360°-(α+β),∵BM、CN分别是∠ABC、∠DCE的角平分线,∴∠ECN=∠DCN,∠CBM=∠ABM,设∠ECN=∠DCN=x,∠CBM=∠ABM=y,∵∠CBM=∠BOC+∠BCO,∠ECN=∠BCO,∴y=∠BOC+x,∴∠BOC=y-x,∵∠ECD+∠DCB=180°,∴2x+360°-(α+β)-2y=180°,∴,∴∠BOC=.故答案为:∠BOC=.【点评】本题考查了多边形的内角与外角,解题的关键是根据多边形的内角和正确表示出各个角.17.(1)60°;(2)∠DPC=∠ADP+∠PCB,理由见解析;(3)∠PCB=∠DPC+∠ADP;或∠ADP=∠DPC+∠PCB,图及理由见解析.【分析】(1)过P作,由,利用平行于同一条直线的两直线平行,得到PM平行于AB,由PM平行于CD,利用两直线平行内错角相等得到∠ADP=∠DPM,∠CPM=∠BCP,而∠DPC=∠DPM+∠CPM,等量代换可得证;(2)过P作,由,利用平行于同一条直线的两直线平行,得到PM平行于AB,由PM平行于CD,利用两直线平行内错角相等得到∠ADP=∠DPM,∠CPM=∠BCP,而∠DPC=∠DPM+∠CPM,等量代换可得证;(3)分别就两种情况画图2和图3,根据平行线的性质和外角的性质可得结论.(1)如图1,过P作,∵,∴,∴∠ADP=∠DPM,∠MPC=∠PCB,∴∠DPM+∠CPM=∠ADP+∠PCB,∴∠DPC=∠ADP+∠PCB,∵∠ADP=25°、∠BCP=35°,∴∠DPC=25°+35°=60°;(2)∠DPC=∠ADP+∠PCB,理由:过P作,如图1所示:∵,∴,∴∠ADP=∠DPM,∠MPC=∠PCB,∴∠DPM+∠CPM=∠ADP+∠PCB,∴∠DPC=∠ADP+∠PCB;(3)①当P在射线AE上运动时,如图2,∠PCB=∠DPC+∠ADP,理由:∵,∴∠PQA=∠PCB,∵∠PQA=∠DPC+∠ADP,∴∠PCB=∠DPC+∠ADP,②当点P在射线BF上运动时,如图3,∠ADP=∠DPC+∠PCB,理由:∵,∴∠ADP=∠DQC,∵∠DQC=∠DPC+∠PCB,∴∠ADP=∠DPC+∠PCB,故答案为:∠PCB=∠DPC+∠ADP;∠ADP=∠DPC+∠PCB.【点评】此题考查了平行线的判定与性质及外角的性质,利用了等量代换的思想,熟练掌握平行线的判定与性质是解本题的关键.18.(1);(2);(3);(4),见解析.【分析】(1)连接,证明即可;(2)利用(1)中结论解答即可;(3)直接利用三角形的外角性质求解即可;(4)同样直接利用三角形的外角性质求解即可.(1)解:如图,连接,,,,,,,故答案为:;(2)解:由(1)可知,,故答案为:;(3)解:如图,,,,即,故答案为:;(4)解:,证明如下:如图,连接,,,,.【点评】本题考查了三角形内角和定理和三角形的外角和性质,解题的关键是灵活运用所学求解.19.(1)①平分,理由见解析;②36°(2)当点P在点E的右侧时,;当点P、点E在点A的左侧,点F在点A的右侧时,;当点P、点E、点F均在点A的左侧时, .【分析】(1)①根据平行线的性质可得∠ACD=72°,再由CE平分∠ACP,CF平分∠DCP,可得∠ACD=2∠ECF,再由∠ACP=36°,可得∠PCF=∠PCE=18°,即可求解;②由①,即可求解;(2)分三种情况讨论:当点P在点E的右侧时,;当点P、点E在点A的左侧,点F在点A的右侧时;当点P、点E、点F均在点A的左侧时,即可求解.(1)解:①CP平分∠ECF,理由如下:∵,∠CAB=108°,∴∠ACD=180°-∠CAB=72°,∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠PCE,∠DCP=2∠PCF,∴∠ACD=2∠ECF,∴∠ECF=∠PCE+∠PCF=36°,∵∠ACP=36°,∴∠ACE=∠PCE=18°,∴∠PCF=∠PCE=18°,即CP平分∠ECF;②由①得:∠ECF=36°;(2)解:当点P在点E的右侧时, ∵,∴∠AFC=∠DCF,∵CF平分∠DCP,∴∠DCF=∠PCF,∴∠PCF=∠AFC,∴∠APC=∠PCF+∠AFC=2∠AFC;当点P、点E在点A的左侧,点F在点A的右侧时, ∵,∴∠DCF=∠AFC,∵CF平分∠DCP,∴∠DCF=∠PCF,∴∠PCF=∠AFC,∵∠APC+∠PCF+∠AFC=180°,∴;当点P、点E、点F均在点A的左侧时,如图,∵,∴∠DCF=∠PFC,∠PCD=180°-∠APC,∵CF平分∠DCP,∴∠PCF=∠DCF,∴∠PCF=∠PFC,∵∠PCF=∠AFC-∠APC,∴∠PFC=180°-∠AFC=∠AFC-∠APC,∴;综上所述,当点P在点E的右侧时,;当点P、点E在点A的左侧,点F在点A的右侧时,;当点P、点E、点F均在点A的左侧时, .【点评】本题主要考查了平行线的性质,有关角平分线的性质,三角形的内角和定理,三角形的外角和定理,熟练掌握平行线的性质,三角形的内角和定理,三角形的外角和定理是解题的关键.20.(1)135°(2);理由见解析(3)或或【分析】延长交于,设,交于点,设,则,根据AB∥CD可表示出,进而根据三角形内角和推论表示出,进而表示出,然后结合和得出关系式,进一步得出结果;类比的方法过程,得出结果;分为的三边分别与平行,当PF'∥NM'时,与同的夹角锐角相等,从而列出方程求得结果,当PH'∥NM'时,同样的方法求得,当F'H'∥NM'时,此时,根据四边形内角和列出方程求得结果.(1)解:如图, 延长交于,设,交于点,设,则,∵AB∥CD,,,,,,在和中,,,,,即:,,故答案为:;(2)解:如图,延长交于,设,交于点,设,设,则,∵AB∥CD,,,,,在和中,,,,,即: ;(3)解:如图,当PF'∥NM'时, ,,如图,当PH'∥NM'时,,,如图,当F'H'∥NM'时,即,,,综上所述:或或.【点评】本题考查了平行线判定和性质,三角形内角和定理及其推论,旋转的性质,四边形内角和等知识,解决问题的关键是正确分类,并找出相等关系列方程.

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map