年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024高考数学大一轮复习Word版题库(人教A版文)第八章 立体几何 第4节 直线、平面平行的判定与性质

    立即下载
    加入资料篮
    2024高考数学大一轮复习Word版题库(人教A版文)第八章 立体几何 第4节 直线、平面平行的判定与性质第1页
    2024高考数学大一轮复习Word版题库(人教A版文)第八章 立体几何 第4节 直线、平面平行的判定与性质第2页
    2024高考数学大一轮复习Word版题库(人教A版文)第八章 立体几何 第4节 直线、平面平行的判定与性质第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024高考数学大一轮复习Word版题库(人教A版文)第八章 立体几何 第4节 直线、平面平行的判定与性质

    展开

    这是一份2024高考数学大一轮复习Word版题库(人教A版文)第八章 立体几何 第4节 直线、平面平行的判定与性质,共22页。试卷主要包含了平面与平面平行,平面α∥平面β的一个充分条件是等内容,欢迎下载使用。
    第4节 直线、平面平行的判定与性质
    考试要求 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.


    1.直线与平面平行
    (1)直线与平面平行的定义
    直线l与平面α没有公共点,则称直线l与平面α平行.
    (2)判定定理与性质定理


    文字语言
    图形表示
    符号表示
    判定定理
    如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行

    a⊄α,
    b⊂α,
    a∥b⇒
    a∥α
    性质定理
    一条直线和一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.

    a∥α,
    a⊂β,
    α∩β=b⇒a∥b
    2.平面与平面平行
    (1)平面与平面平行的定义
    没有公共点的两个平面叫做平行平面.
    (2)判定定理与性质定理


    文字语言
    图形表示
    符号表示
    判定定理
    如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行

    a⊂β,
    b⊂β,
    a∩b=P,
    a∥α,b∥α⇒α∥β
    性质
    两个平面平行,则其中一个平面内的直线平行于另一个平面

    α∥β,a⊂α⇒a∥β
    性质定理
    两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行

    α∥β,α∩γ=a,β∩γ=b⇒a∥b

    1.平行关系中的三个重要结论
    (1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.
    (2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.
    (3)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.
    2.三种平行关系的转化


    1.思考辨析(在括号内打“√”或“×”)
    (1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.(  )
    (2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.(  )
    (3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(  )
    (4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(  )
    答案 (1)× (2)× (3)× (4)√
    解析 (1)若一条直线和平面内的一条直线平行,那么这条直线和这个平面平行或在平面内,故(1)错误.
    (2)若a∥α,P∈α,则过点P且平行于a的直线只有一条,故(2)错误.
    (3)如果一个平面内的两条直线平行于另一个平面,则这两个平面平行或相交,故(3)错误.
    2.下列说法中,与“直线a∥平面α”等价的是(  )
    A.直线a上有无数个点不在平面α内
    B.直线a与平面α内的所有直线平行
    C.直线a与平面α内无数条直线不相交
    D.直线a与平面α内的任意一条直线都不相交
    答案 D
    解析 因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交,故选D.
    3.(2022·昆明诊断)设α,β是两个不同的平面,m是直线且m⊂α,则“m∥β”是“α∥β”的(  )
    A.充分不必要条件
    B.必要不充分条件
    C.充分必要条件
    D.既不充分也不必要条件
    答案 B
    解析 根据m⊂α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;
    反之,α∥β,m⊂α,所以m和β没有公共点,所以m∥β,即由α∥β能得到m∥β.
    所以“m∥β”是“α∥β”的必要不充分条件.
    4.(2021·太原质检)平面α∥平面β的一个充分条件是(  )
    A.存在一条直线a,a∥α,a∥β
    B.存在一条直线a,a⊂α,a∥β
    C.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α
    D.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α
    答案 D
    解析 若α∩β=l,a∥l,a⊄α,a⊄β,a∥α,a∥β,故排除A;
    若α∩β=l,a⊂α,a∥l,则a∥β,故排除B;
    若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C;
    故选D.
    5.在正方体ABCD-A1B1C1D1中,下列结论正确的是________(填序号).
    ①AD1∥BC1;
    ②平面AB1D1∥平面BDC1;
    ③AD1∥DC1;
    ④AD1∥平面BDC1.
    答案 ①②④
    解析 如图,

    因为AB綉C1D1,
    所以四边形AD1C1B为平行四边形.
    故AD1∥BC1,从而①正确;
    易证BD∥B1D1,AB1∥DC1,
    又AB1∩B1D1=B1,BD∩DC1=D,
    故平面AB1D1∥平面BDC1,从而②正确;
    由图易知AD1与DC1异面,故③错误;
    因为AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,
    所以AD1∥平面BDC1,故④正确.
    6.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.

    答案 平行四边形
    解析 ∵平面ABFE∥平面DCGH,
    又平面EFGH∩平面ABFE=EF,
    平面EFGH∩平面DCGH=HG,
    ∴EF∥HG.同理EH∥FG,
    ∴四边形EFGH是平行四边形.

     考点一 直线与平面平行的判定与性质
    角度1 直线与平面平行的判定
    例1 如图所示,正方形ABCD与正方形ABEF所在的平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.

    证明 法一 如图所示,作PM∥AB交BE于M,作QN∥AB交BC于N,连接MN.

    ∵正方形ABCD和正方形ABEF有公共边AB.
    又AP=DQ,∴PE=QB,
    又PM∥AB∥QN,
    ∴===,∴=.
    又AB綉DC,∴PM綉QN,
    ∴四边形PMNQ为平行四边形,
    ∴PQ∥MN.
    又MN⊂平面BCE,PQ⊄平面BCE,
    ∴PQ∥平面BCE.
    法二 如图,在平面ABEF内,过点P作PM∥BE交AB于点M,连接QM.

    则PM∥平面BCE,
    ∵PM∥BE,
    ∴=,又AE=BD,AP=DQ,
    ∴PE=BQ,∴=,∴=,
    ∴MQ∥AD,又AD∥BC,∴MQ∥BC,
    ∴MQ∥平面BCE,又PM∩MQ=M,
    ∴平面PMQ∥平面BCE,又PQ⊂平面PMQ,∴PQ∥平面BCE.
    角度2 直线与平面平行的性质
    例2 (2022·许昌质检)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,∠DAB=90°,AB=BC=PA=AD=2,E为PB的中点,F是PC上的点.

    (1)若EF∥平面PAD,证明:F为PC的中点;
    (2)求点C到平面PBD的距离.
    (1)证明 因为BC∥AD,BC⊄平面PAD,AD⊂平面PAD,
    所以BC∥平面PAD.
    因为P∈平面PBC,P∈平面PAD,所以可设平面PBC∩平面PAD=PM,
    又因为BC⊂平面PBC,所以BC∥PM,
    因为EF∥平面PAD,EF⊂平面PBC,
    所以EF∥PM,从而得EF∥BC.
    因为E为PB的中点,所以F为PC的中点.
    (2)解 因为PA⊥底面ABCD,∠DAB=90°,AB=BC=PA=AD=2,

    所以PB==2,PD==2,
    BD==2,
    所以S△DPB=PB·=6.
    设点C到平面PBD的距离为d,
    由VC-PBD=VP-BCD,得S△DPB·d=S△BCD·PA=××BC×AB×PA,
    则6d=×2×2×2,解得d=.
    感悟提升 1.判断或证明线面平行的常用方法
    (1)利用线面平行的定义(无公共点).
    (2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).
    (3)利用面面平行的性质(α∥β,a⊂α⇒a∥β).
    (4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).
    2.应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面确定交线.
    训练1 如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,M是线段EF的中点.

    (1)求证:AM∥平面BDE;
    (2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.
    (1)证明 如图,记AC与BD的交点为O,连接OE.

    因为O,M分别为AC,EF的中点,四边形ACEF是矩形,
    所以四边形AOEM是平行四边形,
    所以AM∥OE.
    又因为OE⊂平面BDE,AM⊄平面BDE,
    所以AM∥平面BDE.
    (2)解 l∥m,证明如下:
    由(1)知AM∥平面BDE,
    又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,
    同理,AM∥平面BDE,
    又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m∥AM,所以l∥m.
    考点二 平面与平面平行的判定与性质
    例3 如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.

    (1)证明:平面A1BD∥平面CD1B1;
    (2)若平面ABCD∩平面B1D1C=l,证明:B1D1∥l.
    证明 (1)由题设知BB1綉DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.
    又BD⊄平面CD1B1,B1D1⊂平面CD1B1,
    所以BD∥平面CD1B1.
    因为A1D1綉B1C1綉BC,
    所以四边形A1BCD1是平行四边形,
    所以A1B∥D1C.
    又A1B⊄平面CD1B1,D1C⊂平面CD1B1,
    所以A1B∥平面CD1B1.
    又因为BD∩A1B=B,BD,A1B⊂平面A1BD,所以平面A1BD∥平面CD1B1.
    (2)由(1)知平面A1BD∥平面CD1B1,
    又平面ABCD∩平面B1D1C=l,
    平面ABCD∩平面A1BD=BD,
    所以直线l∥直线BD,
    在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,
    所以B1D1∥BD,所以B1D1∥l.
    感悟提升 1.判定面面平行的主要方法
    (1)利用面面平行的判定定理.
    (2)线面垂直的性质(垂直于同一直线的两平面平行).
    2.面面平行条件的应用
    (1)两平面平行,分别构造与之相交的第三个平面,交线平行.
    (2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行.
    提醒 利用面面平行的判定定理证明两平面平行,需要说明是在一个平面内的两条直线是相交直线.
    训练2 如图,在三棱柱ABC-A1B1C1中,E,F,G分别为B1C1,A1B1,AB的中点.

    (1)求证:平面A1C1G∥平面BEF;
    (2)若平面A1C1G∩BC=H,求证:H为BC的中点.
    证明 (1)∵E,F分别为B1C1,A1B1的中点,∴EF∥A1C1,
    ∵A1C1⊂平面A1C1G,EF⊄平面A1C1G,
    ∴EF∥平面A1C1G,
    又F,G分别为A1B1,AB的中点,ABB1A1为平行四边形,
    ∴A1F=BG,且A1F∥BG,
    ∴四边形A1GBF为平行四边形,
    则BF∥A1G,
    ∵A1G⊂平面A1C1G,BF⊄平面A1C1G,
    ∴BF∥平面A1C1G,
    又EF∩BF=F,EF,BF⊂平面BEF,
    ∴平面A1C1G∥平面BEF.
    (2)∵平面ABC∥平面A1B1C1,平面A1C1G∩平面A1B1C1=A1C1,平面A1C1G与平面ABC有公共点G,则有经过G的直线,设交BC于点H,则A1C1∥GH,得GH∥AC,

    ∵G为AB的中点,∴H为BC的中点.
    考点三 平行关系的综合应用
    例4 如图,在正方体ABCD-A1B1C1D1中,P,Q分别为对角线BD,CD1上的点,且==.

    (1)求证:PQ∥平面A1D1DA;
    (2)若R是AB上的点,的值为多少时,能使平面PQR∥平面A1D1DA?请给出证明.
    (1)证明 连接CP并延长与DA的延长线交于M点,如图,连接MD1,

    因为四边形ABCD为正方形,
    所以BC∥AD,
    故△PBC∽△PDM,所以==,
    又因为==,所以==,
    所以PQ∥MD1.
    又MD1⊂平面A1D1DA,PQ⊄平面A1D1DA,
    故PQ∥平面A1D1DA.
    (2)解 当的值为时,能使平面PQR∥平面A1D1DA.

    如图,证明:因为=,
    即=,故=.所以PR∥DA.
    又DA⊂平面A1D1DA,PR⊄平面A1D1DA,
    所以PR∥平面A1D1DA,
    又PQ∥平面A1D1DA,PQ∩PR=P,PQ,PR⊂平面PQR,
    所以平面PRQ∥平面A1D1DA.
    感悟提升 三种平行关系的转化

    训练3 如图,四边形ABCD与四边形ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:

    (1)BE∥平面DMF;
    (2)平面BDE∥平面MNG.
    证明 (1)如图,连接AE,则AE必过DF与GN的交点O,因为四边形ADEF为平行四边形,所以O为AE的中点.
    连接MO,则MO为△ABE的中位线,
    所以BE∥MO,
    又BE⊄平面DMF,MO⊂平面DMF,
    所以BE∥平面DMF.

    (2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥NG,
    又DE⊄平面MNG,NG⊂平面MNG,
    所以DE∥平面MNG.
    因为M为AB的中点,N为AD的中点,
    所以MN为△ABD的中位线,
    所以BD∥MN,
    又BD⊄平面MNG,MN⊂平面MNG,
    所以BD∥平面MNG,
    又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.


    1.设α,β为两个平面,则α∥β的充要条件是(  )
    A.α内有无数条直线与β平行
    B.α内有两条相交直线与β平行
    C.α,β平行于同一条直线
    D.α,β垂直于同一平面
    答案 B
    解析 若α∥β,则α内有无数条直线与β平行,当α内无数条直线互相平行时,α与β可能相交;若α,β平行于同一条直线,则α与β可以平行也可以相交;若α,β垂直于同一个平面,则α与β可以平行也可以相交,故A,C,D中条件均不是α∥β的充要条件.根据两平面平行的判定定理知,若一个平面内有两条相交直线与另一个平面平行,则两平面平行,反之也成立.因此B中条件是α∥β的充要条件.
    2.下列命题中正确的是(  )
    A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面
    B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行
    C.平行于同一条直线的两个平面平行
    D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α
    答案 D
    解析 A中,a可以在过b的平面内;B中,a与α内的直线也可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知b∥α,正确.
    3.如果AB,BC,CD是不在同一平面内的三条线段,则经过它们中点的平面和直线AC的位置关系是(  )
    A.平行 B.相交
    C.AC在此平面内 D.平行或相交
    答案 A
    解析 把这三条线段放在正方体内可得如图,显然AC∥EF,AC⊄平面EFG,
    ∵EF⊂平面EFG,

    故AC∥平面EFG.
    4.(2021·兰州诊断)如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是(  )

    A.异面    B.平行
    C.相交    D.以上均有可能
    答案 B
    解析 在三棱柱ABC-A1B1C1中,AB∥A1B1,
    ∵AB⊂平面ABC,A1B1⊄平面ABC,
    ∴A1B1∥平面ABC.
    ∵过A1B1的平面与平面ABC交于DE,
    ∴DE∥A1B1,∴DE∥AB.
    5.若平面α截三棱锥所得截面为平行四边形,则该三棱锥中与平面α平行的棱有(  )
    A.0条 B.1条
    C.2条 D.1条或2条
    答案 C
    解析 如图所示,平面α即平面EFGH,则四边形EFGH为平行四边形,

    则EF∥GH.
    ∵EF⊄平面BCD,GH⊂平面BCD,
    ∴EF∥平面BCD.
    又∵EF⊂平面ACD,平面BCD∩平面ACD=CD,∴EF∥CD.
    又EF⊂平面EFGH,CD⊄平面EFGH.
    ∴CD∥平面EFGH,
    同理,AB∥平面EFGH,
    所以与平面α(平面EFGH)平行的棱有2条.
    6.(2022·郑州模拟)如图,四棱柱ABCD-A1B1C1D1中,四边形ABCD为平行四边形,E,F分别在线段DB,DD1上,且==,G在CC1上且平面AEF∥平面BD1G,则=(  )

    A. B. C. D.
    答案 B
    解析 如图所示,延长AE交CD于H,连接FH,则△DEH∽△BEA,所以==.因为平面AEF∥平面BD1G,平面AEF∩平面CDD1C=FH,平面BD1G∩平面CDD1C1=D1G,所以FH∥D1G.又四边形CDD1C1是平行四边形,所以△DFH∽△C1GD1,所以=,因为==,所以=,因为=,所以FD1=C1G,DF=CG,所以=,故选B.

    7.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且____________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.
    ①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.
    可以填入的条件有________(填序号).
    答案 ①或③
    解析 由面面平行的性质定理可知,①正确;当m∥γ,n∥β时,n和m可能平行或异面,②错误;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以m∥n,③正确.
    8.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是________.

    答案 ①④
    解析 ①中,易知NP∥AA′,MN∥A′B,
    ∴平面MNP∥平面AA′B,可得出AB∥平面MNP(如图).

    ④中,NP∥AB,能得出AB∥平面MNP.
    在②③中不能判定AB∥平面MNP.
    9.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.
    答案 Q为CC1的中点
    解析 如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面PAO,QB⊄平面PAO,PO⊂平面PAO,PA⊂平面PAO,所以D1B∥平面PAO,QB∥平面PAO,又D1B∩QB=B,D1B,QB⊂平面D1BQ,所以平面D1BQ∥平面PAO.故Q为CC1的中点时,有平面D1BQ∥平面PAO.

    10.如图,在四棱锥P-ABCD中,AD∥BC,AB=BC=AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.

    (1)求证:AP∥平面BEF;
    (2)求证:GH∥平面PAD.
    证明 (1)如图,连接EC,因为AD∥BC,BC=AD,E为AD中点,

    所以BC∥AE,BC=AE,
    所以四边形ABCE是平行四边形,
    所以O为AC的中点.
    又因为F是PC的中点,所以FO∥AP,
    因为FO⊂平面BEF,AP⊄平面BEF,
    所以AP∥平面BEF.
    (2)连接FH,OH,因为F,H分别是PC,CD的中点,所以FH∥PD,
    因为PD⊂平面PAD,FH⊄平面PAD,
    所以FH∥平面PAD.
    又因为O是BE的中点,H是CD的中点,
    所以OH∥AD,
    因为AD⊂平面PAD,OH⊄平面PAD,
    所以OH∥平面PAD.
    又FH∩OH=H,FH,OH⊂平面OHF,
    所以平面OHF∥平面PAD.
    又因为GH⊂平面OHF,
    所以GH∥平面PAD.
    11.(2022·百校大联考)已知在四棱锥P-ABCD中,PD⊥平面ABCD,AD⊥DC,AB∥DC,DC=2AB,Q为PC的中点.

    (1)求证:BQ∥平面PAD;
    (2)若PD=3,BC=,BC⊥BD,试在线段PC上确定一点S,使得三棱锥S-BCD的体积为.
    (1)证明 取PD的中点G,连接AG,GQ,

    因为Q为PC的中点,
    所以GQ∥DC,且GQ=DC,
    又因为AB∥DC,DC=2AB,
    所以GQ∥AB,GQ=AB,
    所以四边形ABQG是平行四边形,
    所以BQ∥AG,
    又BQ⊄平面PAD,AG⊂平面PAD,
    所以BQ∥平面PAD.
    (2)解 因为在四边形ABCD中,AB∥CD,AD⊥DC,DC=2AB,
    所以点B在线段CD的垂直平分线上,
    又因为BC=,BC⊥BD,
    所以BD=BC=,
    所以△BCD的面积S=××=1.
    设点S到平面ABCD的距离为h,
    所以×1×h=,所以h=2,
    又PD⊥平面ABCD,PD=3,
    所以点S在线段PC上靠近点P的三等分点处.

    12.《九章算术·商功》记载了一个古代数学名词“堑堵”.即两底面为直角三角形的直棱柱,亦即长方体的斜截平分体.如图所示,堑堵(即直三棱柱)ABC-DEF中,AB⊥AC,AB=AC=2,AD=4,G是FC的中点,则下列说法错误的是(  )

    A.点D到平面AGE的距离为
    B.平面ABC内存在直线平行于平面AEG
    C.三角形AGE为直角三角形
    D.BE与AG的夹角为
    答案 D
    解析 设点D到平面AGE的距离为h,则由VD-AGE=VE-ADG可知h·×2×2=×2××2×4,则h=,A正确;
    取ED,EA的中点M、N,连接MN,FM,GN,则MN∥FG,MN=FG,
    ∴四边形MNGF为平行四边形,∴MF∥NG,
    ∵MF⊄平面AGE,NG⊂平面AGE,
    ∴MF∥平面AGE,而MF⊂平面DEF,平面ABC∥平面DEF,B正确;
    依题意可知,AG=2,EG=2,EA=2,∴AG2+EG2=EA2,∴AG⊥GE,
    ∴△AGE为直角三角形,C正确;
    ∵BE∥CG,∴∠AGC即为BE与AG所成的角(或其补角),
    ∵G为CF的中点,CF=AD=4,AC=2,
    ∴AC=CG,
    又CF⊥平面ABC,∴∠AGC=,D错误.
    13.如图,在棱长为1的正方体ABCD-A1B1C1D1中,M,N分别是A1D1,A1B1的中点,过直线BD的平面α∥平面AMN,则平面α截该正方体所得截面的面积为________.

    答案 
    解析 如图1,分别取B1C1,C1D1的中点E,F,连接EF,BE,DF,B1D1,ME,易知EF∥B1D1∥BD,AB∥ME,AB=EM,所以四边形ABEM为平行四边形,则AM∥BE,又BD和BE为平面BDFE内的两条相交直线.
     
    图1         图2
    所以平面AMN∥平面BDFE,
    即平面BDFE为平面α,BD=,EF=B1D1=,得四边形BDFE为等腰梯形,DF=BE=,
    在等腰梯形BDFE如图2中,
    过E,F作BD的垂线,则四边形EFGH为矩形,
    ∴其高FG===,
    故所得截面的面积为
    ××=.
    14.如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.

    (1)证明:MN∥平面C1DE;
    (2)求点C到平面C1DE的距离.
    (1)证明 如图,连接B1C,ME.
    因为M,E分别为BB1,BC的中点,

    所以ME∥B1C,且ME=B1C.
    又因为N为A1D的中点,所以ND=A1D.

    由题设知A1B1綉DC,
    可得B1C綉A1D,故ME綉ND,
    因此四边形MNDE为平行四边形,
    所以MN∥ED.
    又MN⊄平面C1DE,DE⊂平面C1DE,
    所以MN∥平面C1DE.
    (2)解 过点C作C1E的垂线,垂足为H.
    由已知可得DE⊥BC,DE⊥C1C,
    又BC∩C1C=C,BC,C1C⊂平面C1CE,
    所以DE⊥平面C1CE,
    故DE⊥CH.所以CH⊥平面C1DE,
    故CH的长即为点C到平面C1DE的距离.
    由已知可得CE=1,C1C=4,
    所以C1E=,故CH=.
    从而点C到平面C1DE的距离为.

    相关试卷

    2024年数学高考大一轮复习第八章 §8.4 直线、平面平行的判定与性质:

    这是一份2024年数学高考大一轮复习第八章 §8.4 直线、平面平行的判定与性质,共6页。

    2024高考数学大一轮复习Word版题库(人教A版文)第八章 立体几何 第5节 直线、平面垂直的判定与性质:

    这是一份2024高考数学大一轮复习Word版题库(人教A版文)第八章 立体几何 第5节 直线、平面垂直的判定与性质,共25页。试卷主要包含了直线和平面所成的角,二面角,平面与平面垂直等内容,欢迎下载使用。

    2024高考数学大一轮复习Word版题库(人教A版文)第八章 立体几何 第3节 空间点、直线、平面之间的位置关系:

    这是一份2024高考数学大一轮复习Word版题库(人教A版文)第八章 立体几何 第3节 空间点、直线、平面之间的位置关系,共22页。试卷主要包含了平行公理和等角定理,异面直线所成的角等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map