2024高考数学大一轮复习Word版题库(人教A版文)第十章 算法初步、统计与统计案例、概率 第2节 随机抽样
展开
这是一份2024高考数学大一轮复习Word版题库(人教A版文)第十章 算法初步、统计与统计案例、概率 第2节 随机抽样,共14页。试卷主要包含了系统抽样,分层抽样,故选C等内容,欢迎下载使用。
第2节 随机抽样
考试要求 1.理解随机抽样的必要性和重要性;2.会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.会用随机抽样的基本方法解决一些简单的实际问题.
1.简单随机抽样
(1)定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.
(2)最常用的简单随机抽样的方法:抽签法和随机数法.
2.系统抽样
(1)定义:当总体中的个体数目较多时,可将总体分成均衡的几个部分,然后按照事先定出的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样.
(2)系统抽样的操作步骤
假设要从容量为N的总体中抽取容量为n的样本.
①先将总体的N个个体编号;
②确定分段间隔k,对编号进行分段,当(n是样本容量)是整数时,取k=(否则,先剔除一些个体);
③在第1段用简单随机抽样确定第一个个体编号l(l≤k);
④按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),……,依次进行下去,直到获取整个样本.
3.分层抽样
(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.
(2)应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.
1.不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.
2.系统抽样一般也称为等距抽样,入样个体的编号相差分段间隔k的整数倍.
3.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.
1.思考辨析(在括号内打“√”或“×”)
(1)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( )
(2)系统抽样在起始部分抽样时采用简单随机抽样.( )
(3)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( )
(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( )
答案 (1)× (2)√ (3)× (4)×
2.(易错题)学校为了了解高二年级1 203名学生对某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为( )
A.40 B.30.1
C.30 D.12
答案 C
解析 ∵1 203除以40不是整数,
∴先随机的去掉3个人,再除以40,得到每一段有30个人,则分段的间隔k为30.故选C.
3.(易错题)某校要从高一、高二、高三共2 022名学生中选取50名组成志愿团,若采用下列的方法选取,先用简单随机抽样的方法从2 022人中剔除22人,剩下的2 000人再按分层随机抽样的方法进行,则每人入选的概率为( )
A.都相等且为 B.都相等且为
C.不会相等 D.均不相等
答案 A
解析 因为整个抽样过程均为等可能抽样,故每人入选的概率相等且均为,故选A.
4.(2019·全国Ⅰ卷)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )
A.8号学生 B.200号学生
C.616号学生 D.815号学生
答案 C
解析 根据题意,系统抽样是等距抽样,
所以抽样间隔为=10.
因为46除以10余6,所以抽到的号码都是除以10余6的数,结合选项知应为616.故选C.
5.(2022·东北三省三校)某工厂为了对40个零件进行抽样调查,将其编号为00,01,…,38,39.现要从中选出5个,利用下面的随机数表,从第一行第3列开始,由左至右依次读取,选出来的第5个零件的编号是________.
0647 4373 8636 9647 3661 4698 6371 6233 2616 8045 6011 1410
9577 7424 6762 4281 1457 2042 5332 3732 2707 3607 5124 5179
答案 11
解析 利用随机数表,从第一行第3列开始,由左至右依次读取,即从47开始读取,在编号范围内的提取出来,重复的跳过,可得36,33,26,16,11,则选出来的第5个零件的编号是11.
6.(2022·全国大联考)在文明城市创建过程中,某市创建办公室对市区内从事小吃、衣帽、果蔬、玩具等6类商户数进行了统计并绘成如图所示的条形统计图,对商户进行了文明城市知识教育培训.2022年年初,该市创建办公室计划从2 000户商户中,按照商户类型进行分层抽样,随机抽取100户进行文明城市知识教育培训效果调查,则衣帽类和果蔬类商户抽取的户数分别为________.
答案 25 15
解析 共有2 000户,需要抽取100户,故抽取的比例为=,
由题中条形统计图可知,衣帽类有500户,果蔬类有300户,
则衣帽类抽取的户数为500×=25,
果蔬类抽取的户数为300×=15.
考点一 简单随机抽样及其应用
1.下列抽取样本的方式属于简单随机抽样的个数为( )
①从无限多个个体中抽取100个个体作为样本;
②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;
③从20件玩具中一次性抽取3件进行质量检验;
④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.
A.0 B.1 C.2 D.3
答案 A
解析 ①不是简单随机抽样,因为被抽取样本的总体的个数是无限的,而不是有限的;
②不是简单随机抽样.因为它是有放回抽样;
③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取;
④不是简单随机抽样.因为不是等可能抽样.故选A.
2.用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性与“第二次被抽到”的可能性分别是( )
A., B.,
C., D.,
答案 A
解析 在抽样过程中,个体a每一次被抽中的概率是相等的,因为总体容量为10,故个体a“第一次被抽到”的可能性与“第二次被抽到”的可能性均为,故选A.
3.(2022·成都测试)为了加强全民爱眼意识,提高民族健康素质,1996年,卫生部、教育部、团中央等12个部委联合发出通知,将爱眼日活动列为国家节日之一,并确定每年的6月6日为“全民爱眼日”.某校高二(1)班有40名学生,学号为01到40,现采用随机数表法从该班抽取5名学生参加“全国爱眼日”宣传活动.已知随机数表中第6行至第7行的各数如下:
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
若从随机数表第6行第9列的数开始向右读,则抽取的第5名学生的学号是( )
A.17 B.23 C.35 D.37
答案 C
解析 根据随机数表,抽取的5名学生的学号分别为39,17,37,23,35,所以抽取的第5名学生的学号为35.
感悟提升 1.简单随机抽样需满足:(1)被抽取的样本总体的个体数有限;(2)逐个抽取;(3)是不放回抽取;(4)是等可能抽取.
2.简单随机抽样常用抽签法(适用于总体中个体数较少的情况)、随机数法(适用于个体数较多的情况).
考点二 系统抽样及其应用
例1 (1)某学校采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做视力检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽取的数是( )
A.5 B.7 C.11 D.13
(2)(2022·安徽六校联考)从编号为1,2,3,…,88的88个网站中采用系统抽样抽取容量为8的样本,若所抽样本中有编号为53的网站,则样本中网站的最小编号为______.
答案 (1)B (2)9
解析 (1)把800名学生分成50组,每组16人,各小组抽到的数构成一个公差为16的等差数列,39在第3组.
所以第1组抽到的数为39-32=7.
(2)抽样间隔为=11,则样本中比53小的网站编号有42,31,20,9,故样本中网站的最小编号为9.
感悟提升 1.如果总体容量N能被样本容量n整除,则抽样间隔为k=,否则,可随机地从总体中剔除余数,然后按系统抽样的方法抽样,特别注意,每个个体被抽到的机会均是.
2.系统抽样中依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.
训练1 (1)(2022·郑州模拟)为规范学校办学,某省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是( )
A.13 B.19 C.20 D.51
(2)中央电视台为了解观众对某综艺节目的意见,准备从502名现场观众中抽取10%进行座谈,现用系统抽样的方法完成这一抽样,则在进行分组时,需剔除________个个体,抽样间隔为________.
答案 (1)C (2)2 10
解析 (1)由系统抽样的原理知,抽样的间隔为52÷4=13,
故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,即7号,20号,33号,46号.
∴样本中还有一位同学的编号为20.
(2)把502名观众平均分成50组,由于502除以50的商是10,余数是2,所以每组有10名观众,还剩2名观众,采用系统抽样的方法抽样时,应先用简单随机抽样的方法从502名观众中抽取2名观众,这2名观众不参加座谈;再将剩下的500名观众编号为1,2,3,…,500,并均匀分成50段,每段含=10个个体.所以需剔除2个个体,抽样间隔为10.
考点三 分层抽样及其应用
角度1 求某层入样的个体数
例2 某电视台在网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20 000人,其中各种态度对应的人数如下表所示:
最喜爱
喜爱
一般
不喜欢
4 800
7 200
6 400
1 600
电视台为了了解观众的具体想法和意见,打算从中抽取100人进行详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽取的人数分别为( )
A.25,25,25,25 B.48,72,64,16
C.20,40,30,10 D.24,36,32,8
答案 D
解析 因为抽样比为=,所以每类人中应抽取的人数分别为4 800×=24,7 200×=36,6 400×=32,1 600×=8.
角度2 求总体或样本容量
例3 (1)某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )
A.100 B.150 C.200 D.250
(2)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )
A.101 B.808 C.1 212 D.2 022
答案 (1)A (2)B
解析 (1)法一 由题意可得=,解得n=100.
法二 由题意,得抽样比为=,总体容量为3 500+1 500=5 000,
故n=5 000×=100.
(2)甲社区每个个体被抽到的概率为=,样本容量为12+21+25+43=101,所以四个社区中驾驶员的总人数N==808.
感悟提升 1.求某层应抽个体数量:按该层所占总体的比例计算.
2.已知某层个体数量,求总体容量或反之求解:根据分层抽样就是按比例抽样,列比例式进行计算.
3.分层抽样的计算应根据抽样比构造方程求解,其中“抽样比==”.
训练2 (1)已知我市某居民小区户主人数和户主对户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取30%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为( )
A.240,18 B.200,20
C.240,20 D.200,18
(2)某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人).
篮球组
书画组
乐器组
高一
45
30
a
高二
15
10
20
学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a的值为________.
答案 (1)A (2)30
解析 (1)样本容量n=(250+150+400)×30%=240,
抽取的户主对四居室满意的人数为150×30%×40%=18.
(2)由分层抽样得=,解得a=30.
1.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是( )
A.总体
B.个体
C.样本的容量
D.从总体中抽取的一个样本
答案 A
解析 由题目条件知,5 000名居民的阅读时间的全体是总体;其中每1名居民的阅读时间是个体;从5 000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200.
2.下面的抽样方法是简单随机抽样的是( )
A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖
B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格
C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见
D.用抽签方法从10件产品中选取3件进行质量检验
答案 D
解析 A,B不是简单随机抽样,因为抽取的个体间的间隔是固定的;
C不是简单随机抽样,因为总体中的个体有明显的层次;
D是简单随机抽样.故选D.
3.总体由编号为00,01,02,…,48,49的50个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第3个个体的编号为( )
附:第6行至第9行的随机数表如下:
2635 7900 3370 9160 1620 3882 7757 4950
3211 4919 7306 4916 7677 8733 9974 6732
2748 6198 7164 4148 7086 2888 8519 1620
7477 0111 1630 2404 2979 7991 9683 5125
A.3 B.16 C.38 D.20
答案 D
解析 按随机数表法,从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,超出00~49及重复的不选,
则编号依次为33,16,20,38,49,32,…,
则选出的第3个个体的编号为20,故选D.
4.(2022·西安质检)如图是调查某学校高三年级男女学生是否喜欢数学的等高条形图,阴影部分的高表示喜欢数学的频率.已知该年级男、女生各500名(所有学生都参加了调查),现从所有喜欢数学的学生中按分层抽样的方式抽取32人,则抽取的男生人数为( )
A.16 B.32 C.24 D.8
答案 C
解析 由题中等高条形图可知喜欢数学的女生和男生的人数比为1∶3,所以抽取的男生人数为24.故选C.
5.在一个容量为N的总体中抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )
A.p1=p2<p3 B.p2=p3<p1
C.p1=p3<p2 D.p1=p2=p3
答案 D
解析 由随机抽样的知识知,三种抽样中,每个个体被抽到的概率都相等,故选D.
6.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )
类别
人数
老年教师
900
中年教师
1 800
青年教师
1 600
合计
4 300
A.90 B.100 C.180 D.300
答案 C
解析 设该样本中的老年教师人数为x,由题意及分层抽样的特点得=,故x=180.
7.将参加英语口语测试的1 000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个样本编号为( )
A.700 B.669 C.695 D.676
答案 C
解析 由题意可知,第一组随机抽取的编号l=15,分段间隔数k===20,由题意知抽出的这些号码是以15为首项,20为公差的等差数列,则抽取的第35个编号为15+(35-1)×20=695.
8.(2021·德州模拟)2021年我国推进新冠疫苗全人群免费接种,某小区年龄分布如图所示,现用分层抽样的方法从该小区所有人中抽取60人进行抗体检测,则从40岁至50岁之间的人群中抽取的人数为( )
A.18 B.24 C.5 D.9
答案 A
解析 由条形统计图的数据,根据分层抽样的定义可以知道,若抽取60人,则从40岁至50岁之间的人群中抽取的人数为60×=18,故选A.
9.一个公司共有N名员工,下设一些部门,要采用等比例分层抽样的方法从全体员工中抽取样本容量为n的样本,已知某部门有m名员工,那么从该部门抽取的员工人数是________.
答案
解析 每个个体被抽到的概率是,
设这个部门抽取了x个员工,则=,∴x=.
10.某中学高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为________.
答案 45
解析 分组间隔为=8,
∵在第一组中随机抽取的号码为5,
∴在第6组中抽取的号码为5+5×8=45.
11.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种,10种,30种,20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是________.
答案 6
解析 抽样比为=,
则抽取的植物油类种数是10×=2,
抽取的果蔬类食品种数是20×=4,
所以抽取的植物油类与果蔬类食品种数之和是2+4=6.
12.(2022·太原调研)从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是5的样本,若编号为28的产品在样本中,则该样本中产品的最大编号为_________.
答案 76
解析 由系统抽样知,抽样间隔k==16,
因为样本中含编号为28的产品,
则与之相邻的产品编号为12和44.
故所取出的5个编号依次为12,28,44,60,76,即最大编号为76.
13.从一群游戏的小孩中抽出k人,一人一个苹果,让他们返回继续游戏,一段时间后,再从中任取m人,发现其中有n人曾分过苹果,则可估计这群小孩共有( )
A.k·人 B.k·人
C.(k+m-n)人 D.(k+m+n)人
答案 B
解析 设这群小孩共有x人,则=,解得x=.
14.某校有高中生1 500人,现采用系统抽样法抽取50人作问卷调查,将高一、高二、高三学生(高一、高二、高三分别有学生495人、490人、515人)按1,2,3,…,1 500编号,若第一组用简单随机抽样的方法抽取的号码为23,则所抽样本中高二学生的人数为( )
A.15 B.16 C.17 D.18
答案 C
解析 采用系统抽样法从1 500人中抽取50人,
所以将1 500人平均分成50组,每组30人,并且在第一组抽取的号码为23,
所以第n组抽取的号码为an=23+(n-1)×30=30n-7,
而高二学生的编号为496到985,所以496≤30n-7≤985,
又n∈N*,
所以17≤n≤33,则共有17人,故选C.
15.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数减少1人,在采用系统抽样时,需要在总体中先剔除2个个体,则n=________.
答案 18
解析 总体容量为6+12+18=36,
当样本容量为n时,由题意知,系统抽样的间隔为,分层抽样的比例是,抽取的工程师人数为×6=,技术员人数为×12=,技工人数为×18=,
所以n应是6的倍数,36的约数,即n=6,12,18.
当样本容量为(n-1)时,总体容量剔除以后是34人,系统抽样的间隔为,因为必须是整数,
所以n只能取18,即样本容量n=18.
16.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定:如果在第1组随机抽取的号码为m,那么在第k组(k≥2)中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是______.
答案 76
解析 由题意知m=8,k=8,则m+k=16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.
相关试卷
这是一份2024年数学高考大一轮复习第十章 算法初步、统计与统计案例、概率,文件包含第4节变量间的相关关系与统计案例doc、第3节用样本估计总体doc、第6节古典概型与几何概型doc、第1节算法与程序框图doc、第5节随机事件的概率doc、第2节随机抽样doc等6份试卷配套教学资源,其中试卷共115页, 欢迎下载使用。
这是一份2024高考数学大一轮复习Word版题库(人教A版文)第十章 算法初步、统计与统计案例、概率 第6节 古典概型与几何概型,共21页。试卷主要包含了几何概型,5°,,6 B等内容,欢迎下载使用。
这是一份2024高考数学大一轮复习Word版题库(人教A版文)第十章 算法初步、统计与统计案例、概率 第5节 随机事件的概率,共15页。试卷主要包含了事件的关系与运算,概率的几个基本性质等内容,欢迎下载使用。