年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    专题9-1 圆锥小题压轴九类-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)(解析版)

    专题9-1  圆锥小题压轴九类-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)(解析版)第1页
    专题9-1  圆锥小题压轴九类-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)(解析版)第2页
    专题9-1  圆锥小题压轴九类-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)(解析版)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题9-1 圆锥小题压轴九类-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)(解析版)

    展开

    这是一份专题9-1 圆锥小题压轴九类-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)(解析版),共29页。试卷主要包含了热点题型归纳1,最新模考题组练23等内容,欢迎下载使用。
    TOC \ "1-3" \h \u \l "_Tc29376" 一、热点题型归纳1
    \l "_Tc17993" 【题型一】 第一定义及其应用1
    \l "_Tc26924" 【题型二】 第二定义及应用3
    \l "_Tc12217" 【题型三】 第三定义及其应用5
    \l "_Tc30563" 【题型四】 焦点三角形与离心率7
    \l "_Tc30563" 【题型五】 定比分点10
    \l "_Tc30563" 【题型六】 焦点三角形与四心12
    \l "_Tc30563" 【题型七】 共焦点的椭圆和双曲线性质14
    \l "_Tc30563" 【题型八】 切线与切点弦17
    \l "_Tc30563" 【题型九】 多曲线19
    \l "_Tc21895" 二、最新模考题组练23
    【题型一】第一定义及其应用
    【典例分析】已知椭圆,F1,F2为其焦点,平面内一点P满足PF2⊥F1F2,且,线段PF1,PF2分别交椭圆于点A,B,若,则=___
    【答案】
    【详解】如图所示,由椭圆的方程可知,,又由,且,所以为等腰直角三角形,又由,所以点为线段的中点,则,且,在等腰直角中,因为,可得,
    又由椭圆的定义可知,即,即,又由,所以,又因为,所以直线的方程为,联立方程组,解得,即,所以。
    【提分秘籍】
    1.三大曲线第一定义
    椭圆第一定义:
    双曲线第一定义:
    抛物线定义:
    2.解题思路
    试题中,如果是椭圆和双曲线,则到一个焦点距离,可转化为到另一个焦点距离.
    【变式演练】
    1.已知双曲线的左、右焦点分别为,,过且垂直于轴的直线与该双曲线的左支交于,两点,,分别交轴于,两点,若的周长为16,则的最大值为______.
    【答案】4
    【详解】如图:
    由的周长为16,所以的周长为32,AB是双曲线的通径,,
    ,可得,可得则,当且仅当,即时等号成立,故填.
    2.已知抛物线的焦点为,直线与交于 ,两点,,线段的中点为,过点作抛物线的准线的垂线,垂足为,则的最小值为____.
    【答案】
    【解析】
    如图所示,设抛物线的准线L,做AQL,于点Q,BPL于点P,抛物线定义可设:|AF|=|AQ|=a,|BF|=|BP|=b。由勾股定理可知,,由梯形的中位线的性质可知,
    ,则:,当且解答a=b时等号成立,所以最小值为
    3.设分别是椭圆的左、右焦点,为椭圆上任一点,点的坐标为,则的最大值为___.
    【答案】15.
    【详解】由椭圆方程可得:a=5,b=4,c=3.∴F1(−3,0),F2(3,0),如图所示,
    由椭圆的定义可得:|PF1|+|PF2|=2a=10,∴|PM|+|PF1|=|PM|+2a−|PF2|=10+(|PM|−|PF2|)⩽10+|MF2|==15,
    则|PM|+|PF1|的最大值为15.故答案为:15.
    【题型二】 第二定义及应用
    【典例分析】 已知双曲线C:x2a2+y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点.P是双曲线在第一象限上的点,直线PO,PF2分别交双曲线C左、右支于另一点M,N.若|PF1|=2|PF2|,且∠MF2N=60°,则C的离心率为__.
    【答案】3
    【解析】设P(t,y),则由双曲线的定义可得PF1=4a,PF2=2a,又PF1=et+a,PF2=et−a,故t=3ae,依据双曲线的对称性可得MF2=PF1=4a,PF2=2a,∠MF2P=120∘,故在ΔMF2P中运用余弦定理可得MP=4a2+16a2−2×2a×4a(−12)=28a2=27a,又P(t,y)在双曲线上,故y2=b2(9e2−1),则MP=2t2+y2=29a2−b2,所以29a2−b2=27a,即2a2=b2,也即2a2=c2−a2⇒e=3,应填答案3。
    【提分秘籍】
    椭圆双曲线曲线第二定义:
    平面上到定点F的距离与到定直线的距离之比为常数e,即
    2.焦半径公式:
    椭圆焦半径:
    双曲线焦半径:.,
    抛物线焦半径:
    3.焦半径范围
    椭圆焦半径范围:
    双曲线焦半径范围:.
    抛物线焦半径范围:
    4.解题技巧:
    焦半径角度公式。其中,为焦半径与焦点轴所成的角。p为焦点到对应准线的距离
    椭圆焦半径夹角公式:
    双曲线焦半径左焦点夹角公式:.,
    抛物线焦半径夹角公式:
    【变式演练】
    1.如图,椭圆,圆 ,椭圆的左、右焦点分别为,过椭圆上一点和原点作直线交圆于两点,若,则的值为__________.
    【答案】8
    【详解】设P点的坐标,因为P在椭圆上,所以,则,
    因为,所以,又,则 ,
    由对称性得=
    .
    2.过抛物线的焦点作直线交抛物线于两点,若则= 。
    【解析】

    3.设F1,F2为双曲线的左右焦点,P为双曲线右支上任一点,当最小值为8a时,该双曲线离心率e的取值范围是 .
    【答案】(1,3]
    【解析】由定义知:|PF2|﹣|PF1|=2a,∴|PF2|=2a+|PF1|,∴=.当且仅当,即||PF1|=2a时取得等号.
    设P(x0,y0),(x0≤﹣a)依焦半径公式得:|PF1|=﹣e×x0﹣a=2a,∴又∵e>1,故e∈(1,3]
    答案:(1,3].
    【题型三】第三定义及其应用
    【典例分析】 已知椭圆的右焦点为,且离心率为,的三个顶点都在椭圆上,设三条边的中点分别为,且三条边所在直线的斜率分别为,且均不为0.为坐标原点,若直线的斜率之和为1.则__________.
    【答案】
    【解析】由题意可得,所以,设
    ,两式作差得,则,,同理可得,所以,填。
    【提分秘籍】
    第三定义,又叫中点弦定理
    (1)AB是椭圆的不平行于对称轴的弦,M为AB的中点,则.
    (2) AB是双曲线的不平行于对称轴的弦,M为AB的中点,则.
    (3)AB是抛物线的不平行于对称轴的弦,M为AB的中点,则
    2.扩展推论
    (1)AB是椭圆的关于原点对称的两点,M椭圆上异于A、B的任一点,若斜率存在,则
    (2)AB是椭圆的关于原点对称的两点,M椭圆上异于A、B的任一点,若斜率存在,则
    【变式演练】
    1.设双曲线的左,右顶点为是双曲线上不同于的一点,设直线的斜率分别为,则当取得最小值时,双曲线C的离心率为
    A.B.C.D.
    【答案】D
    【详解】设,由双曲线,则,设,则,可得,则,所以,所以,设,则,则,
    当时,,单调递减;当时,,单调递增,
    所以当时,函数取得最小值,即当取得最小值时,,
    所以双曲线的离心率为,故选D.
    2.已知平行四边形内接于椭圆,且,斜率之积的范围为,则椭圆离心率的取值范围是( )
    A.B.C.D.
    【答案】A
    【解析】由题意,关于原点对称,设,,,故选A.
    3.在平面直角坐标系中,为坐标原点,、是双曲线上的两个动点,动点满足,直线与直线斜率之积为2,已知平面内存在两定点、,使得为定值,则该定值为________
    【答案】
    【解析】设P(x,y),M(x1,y1),N(x2,y2),则由,得(x,y)=2(x1,y1)-(x2,y2),即x=2x1-x2,y=2y1-y2,∵点M,N在双曲线上,所以,,
    故2x2-y2=(8x12+2x22-8x1x2)-(4y12+y22-4y1y2)=20-4(2x1x2-y1y2),设k0M,kON分别为直线OM,ON的斜率,根据题意可知k0MkON=2,∴y1y2-2 x1x2=0,∴2x2-y2=20,所以P在双曲线2x2-y2=20上;
    设该双曲线的左,右焦点为F1,F2,由双曲线的定义可推断出为定值,该定值为
    【题型四】焦点三角形与离心率
    【典例分析】
    已知,分别是双曲线的左,右焦点,是双曲线上在第一象限内的点,若且.延长交双曲线右支于点,则的面积等于________.
    【答案】4
    【详解】由题意知,根据双曲线定义,所以,,所以.由图知,所以,为等腰三角形,又因为,所以,则为等腰直角三角形,所以.所以.
    【提分秘籍】
    1.焦点三角形
    (1)焦点三角形面积
    椭圆:
    双曲线:
    AB为过抛物线y2=2px焦点的弦,
    2.顶角
    (1).椭圆顶角在短轴顶点处最大。
    (2)双曲线顶角无最大最小
    3.与余弦定理结合
    (1)设椭圆(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记, ,,则有.
    (2)设双曲线(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记, ,,则有.
    【变式演练】
    1.点是椭圆上的点,以为圆心的圆与轴相切于椭圆的焦点,圆与轴相交于,若是钝角三角形,则椭圆离心率的取值范围是________.
    【答案】.
    【详解】∵圆M与轴相切于焦点F,∴不妨设M(c,y),则(因为相切,则圆心与F的连线必垂直于x轴)M在椭圆上,则或(a2=b2+c2),∴圆的半径为,过M作MN⊥y轴与N,则PN=NQ,MN=c,
    PN,NQ均为半径,则△PQM为等腰三角形,∴PN=NQ=,∵∠PMQ为钝角,则∠PMN=∠QMN>45°,
    即PN=NQ>MN=c所以得,即,得,a2−2c2+c2e2>2c2,
    ,e4−4e2+1>0(e2−2)2−3>0e2−2

    相关试卷

    专题10-2 概率压轴大题(理)-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)(解析版):

    这是一份专题10-2 概率压轴大题(理)-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)(解析版),共44页。试卷主要包含了热点题型归纳1,最新模考题组练35等内容,欢迎下载使用。

    专题10-2 概率压轴大题(理)-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)(解析版):

    这是一份专题10-2 概率压轴大题(理)-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)(解析版),共44页。试卷主要包含了热点题型归纳1,最新模考题组练35等内容,欢迎下载使用。

    专题3-4 超难压轴小题:导数和函数归类(1)-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)(解析版):

    这是一份专题3-4 超难压轴小题:导数和函数归类(1)-2022年高考数学毕业班二轮热点题型归纳与变式演练(全国通用)(解析版),共45页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map