备战2024年高考数学一轮复习(一隅三反基础版新高考专用)7-5 空间向量求空间角(精练)(基础版)(原卷版)
展开7.5 空间向量求空间角(精练)(基础版)
1.(2022·辽宁丹东·模拟预测)在三棱锥中,平面ABC,,是正三角形,M,N分别是AB,PC的中点,则直线MN,PB所成角的余弦值为( )
A. B. C. D.
2.(2022·贵州毕节·三模(理))在正四棱锥中,底面边长为,侧棱长为,点P是底面ABCD内一动点,且,则当A,P两点间距离最小时,直线BP与直线SC所成角的余弦值为( )
A. B. C. D.
3.(2022·青海·模拟预测(理))手工课可以提高学生的动手能力、反应能力、创造力,使学生在德、智、体、美、劳各方面得到全面发展,某小学生在一次手工课上制作了一座漂亮的房子模型,它可近似地看成是一个直三棱柱和一个长方体的组合图形,其直观图如图所示,,,P,Q,M,N分别是棱AB,,,的中点,则异面直线PQ与MN所成角的余弦值是______.
4.(2023·全国·高三专题练习)如图所示,是棱长为的正方体,、分别是下底面的棱、的中点,是上底面的棱上的一点,,过、、的平面交上底面于,在上,则异面直线与所成角的余弦值为___________.
1.(2022·上海市七宝中学高三阶段练习)如图所示,在长方体中,,,是棱上的点,且.
(1)求三棱锥的体积;
(2)求直线与平面所成角的正弦值.
2.(2022·全国·高三专题练习)如图,在三棱柱中,底面,的中点为,四面体的体积为,四边形的面积为.
(1)求到平面的距离;
(2)设与交于点O,是以为直角的等腰直角三角形且.求直线与平面所成角的正弦值.
3.(2022·全国·高三专题练习)如图,四棱锥中,侧面为等边三角形,且平面底面,,==.
(1)证明:;
(2)点在棱上,且=,求直线与平面的夹角的正弦值.
4.(2023·全国·高三专题练习(理))如图,四面体中,,E为的中点.
(1)证明:平面平面;
(2)设,点F在上,当的面积最小时,求与平面所成的角的正弦值.
5.(2023·全国·高三专题练习)如图,在直三棱柱中,,,,E分别是,AB的中点,且.
(1)证明:;
(2)求与平面所成角的正弦值.
1.(2022·广东惠州·高三阶段练习)如图,在五面体中,为边长为2的等边三角形,平面,,.
(1)求证:平面平面;
(2)若直线与平面所成角的正切值为,求平面BDE与平面ABC所成锐二面角的余弦值.
2.(2023·全国·高三专题练习(理))如图,在四棱锥中,四边形为直角梯形,,平面平面.
(1)证明:.
(2)若四棱锥的体积为,求平面与平面所成的锐二面角的余弦值.
3.(2023·全国·高三专题练习)如图,在四棱锥P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AD⊥DC,AB∥DC,AB=2AD=2CD=2,点E是PB的中点.
(1)证明:平面EAC⊥平面PBC;
(2)若直线PB与平面PAC所成角的正弦值为;
①求三棱锥P-ACE的体积;
②求二面角P-AC-E的余弦值.
4.(2022·四川·成都七中模拟预测(理))如图1,在等边中,点D,E分别为边AB,AC上的动点且满足,记.将△ADE沿DE翻折到△MDE的位置并使得平面MDE⊥平面DECB,连接MB,MC得到图2,点N为MC的中点.
(1)当EN∥平面MBD时,求λ的值;
(2)试探究:随着λ值的变化,二面角BMDE的大小是否改变?如果改变,请说明理由;如果不改变,请求出二面角的正弦值大小.
5.(2023·山西大同·高三阶段练习)如图,在四棱锥中,平面平面,是等腰直角三角形,是底角.
(1)求证:平面平面.
(2)若,求二面角的余弦值.
6.(2022·广东惠州·高三阶段练习)如图,在四棱锥P−ABCD中,已知AB∥CD,AD⊥CD,BC=BP,CD=2AB=4,△ADP是等边三角形,E为DP的中点.
(1)证明:AE⊥平面PCD;
(2)若,求平面PBC与平面PAD夹角的余弦值.
2024年新高考专用数学第一轮复习讲义一隅三反基础版 7.6 空间向量求空间距离(精练)(基础版)(原卷版+解析版): 这是一份2024年新高考专用数学第一轮复习讲义一隅三反基础版 7.6 空间向量求空间距离(精练)(基础版)(原卷版+解析版),共34页。
2024年新高考专用数学第一轮复习讲义一隅三反基础版 7.5 空间向量求空间角(精练)(基础版)(原卷版+解析版): 这是一份2024年新高考专用数学第一轮复习讲义一隅三反基础版 7.5 空间向量求空间角(精练)(基础版)(原卷版+解析版),共29页。
2024年新高考专用数学第一轮复习讲义一隅三反基础版 7.5 空间向量求空间角(精讲)(基础版)(原卷版+解析版): 这是一份2024年新高考专用数学第一轮复习讲义一隅三反基础版 7.5 空间向量求空间角(精讲)(基础版)(原卷版+解析版),共21页。试卷主要包含了线线角,线面角,二面角等内容,欢迎下载使用。