备战2024高考一轮复习数学(理) 课时验收评价(六十八) 随机事件的概率
展开
这是一份备战2024高考一轮复习数学(理) 课时验收评价(六十八) 随机事件的概率,共5页。试卷主要包含了某省高考实行新方案,下列结论正确的是等内容,欢迎下载使用。
课时验收评价(六十八) 随机事件的概率1.某省高考实行新方案.新高考规定:语文、数学、英语是必考科目,考生还需从思想政治、历史、地理、物理、化学、生物6个等级考试科目中选取3个作为选考科目.某考生已经确定物理作为自己的选考科目,然后只需从剩下的5个等级考试科目中再选择2个组成自己的选考方案,则该考生“选择思想政治、化学”和“选择生物、地理”为( )A.相互独立事件B.对立事件C.不是互斥事件D.互斥事件但不是对立事件解析:选D 该考生“选择思想政治、化学”和“选择生物、地理”不能同时发生,但能同时不发生,所以该考生“选择思想政治、化学”和“选择生物、地理”为互斥事件但不是对立事件.故选D.2.如果事件A与B是互斥事件,且事件A∪B发生的概率是0.64,事件B发生的概率是事件A发生的概率的3倍,则事件A发生的概率为( )A.0.64 B.0.36 C.0.16 D.0.84解析:选C 设P(A)=x,则P(B)=3x,因为事件A与B是互斥事件,所以P(A∪B)=P(A)+P(B)=x+3x=0.64,解得x=0.16.故选C.3.已知随机事件A,B发生的概率满足条件P(A∪B)=,某人猜测事件∩发生,则此人猜测正确的概率为( )A.1 B. C. D.0解析:选C ∵事件∩与事件A∪B是对立事件,∴事件∩发生的概率为P(∩)=1-P(A∪B)=1-=,则此人猜测正确的概率为.故选C.4.随着互联网的普及,网上购物已逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4 500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:满意情况不满意比较满意满意非常满意人数200n2 1001 000 根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是( )A. B. C. D.解析:选C 由题意知,比较满意的人数n=4 500-(200+2 100+1 000)=1 200(人),故“比较满意”或“满意”的人数为1 200+2 100=3 300(人).所以概率为P==.5.在甲、乙、丙、丁四位志愿者中随机选两人,去社区给困难户送生活必需品,恰好选到丙和丁的概率是( )A. B. C. D.解析:选D 在甲、乙、丙、丁四位志愿者中随机选两人,去社会给困难户送生活必需品,基本事件总数n=6,∴恰好选到丙和丁的概率P=.故选D.6.同时掷3枚硬币,至少有1枚正面向上的概率是( )A. B. C. D.解析:选A 由题意知本题是一个等可能事件的概率,试验发生包含的事件是将1枚硬币连续抛掷三次,共有23=8种结果,满足条件的事件的对立事件是3枚硬币都是背面向上,有1种结果,所以至少有一枚正面向上的概率是1-=.故选A.7.下列结论正确的是( )A.事件A的概率P(A)必满足0<P(A)<1B.事件A的概率P(A)=0.999,则事件A是必然事件C.用某种药物对患有胃溃疡的500名病人进行治疗,结果有380人有明显的疗效,现有一名胃溃疡病人服用此药,则估计有明显的疗效的可能性为76%D.某奖券中奖率为50%,则某人购买此奖券10张,一定有5张中奖解析:选C 由概率的基本性质可知,事件A的概率P(A)满足0≤P(A)≤1,故A错误;必然事件的概率为1,故B错误;某奖券中奖率为50%,则某人购买此奖券10张,不一定有5张中奖,故D错误.故选C.8.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5)2;[15.5,19.5)4;[19.5,23.5)9;[23.5,27.5)18;[27.5,31.5)11;[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3.根据样本的频率分布估计,数据在[31.5,43.5)的概率约是( )A. B. C. D.解析:选B 根据所给的数据的分组及各组的频数得到:数据在[31.5,43.5)范围的有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,∴满足题意的数据有12+7+3=22(个),而总的数据有66个,∴数据在[31.5,43.5)的频率为=,由频率估计概率得P=.故选B.9.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是( )A. B.C. D.解析:选D 由题意可得即解得<a≤.10.向三个相邻的军火库投一枚炸弹,炸中第一军火库的概率为0.025,炸中第二、三军火库的概率均为0.1,只要炸中一个,另两个也会发生爆炸,则军火库爆炸的概率为_______.解析:设A,B,C分别表示炸弹炸中第一、第二、第三军火库这三个事件,D表示军火库爆炸,则P(A)=0.025,P(B)=0.1,P(C)=0.1,其中A,B,C互斥,故P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.025+0.1+0.1=0.225.答案:0.22511.甲、乙、丙、丁、戊5名同学参加“《论语》知识大赛”,决出第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说:“虽然你的成绩比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”.从上述回答分析,丙是第一名的概率是________.解析:由于甲和乙都不可能是第一名,所以第一名只可能是丙、丁或戊.又因为所有的限制条件对丙、丁或戊都没有影响,所以这三个人获得第一名是等概率事件,所以丙是第一名的概率是.答案:12.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.解析:∵==0.98,∴经停该站高铁列车所有车次的平均正点率的估计值为0.98.答案:0.9813.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红玻璃球的概率为,取得两个绿玻璃球的概率为,则取得两个同色玻璃球的概率为________;至少取得一个红玻璃球的概率为________.解析:由于“取得两个红玻璃球”与“取得两个绿玻璃球”是互斥事件,取得两个同色玻璃球,只需两互斥事件有一个发生即可,因而取得两个同色玻璃球的概率为P=+=.由于事件A“至少取得一个红玻璃球”与事件B“取得两个绿玻璃球”是对立事件,则至少取得一个红玻璃球的概率为P(A)=1-P(B)=1-=.答案: 14.某保险公司利用简单随机抽样方法对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)01 0002 0003 0004 000车辆数(辆)500130100150120 (1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保新司机车辆中,新司机获赔金额为4 000元的概率.解:(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)==0.15,P(B)==0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,可得样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为=0.24,由频率估计概率得P(C)=0.24.15.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得到下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.解:(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6×450-4×450=900;若最高气温位于区间[20,25),则Y=6×300+2(450-300)-4×450=300;若最高气温低于20,则Y=6×200+2(450-200)-4×450=-100.所以,Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为=0.8,因此Y大于零的概率的估计值为0.8.
相关试卷
这是一份备战2024高考一轮复习数学(理) 课时验收评价(五十七) 椭 圆,共5页。试卷主要包含了点全面广强基训练,重点难点培优训练等内容,欢迎下载使用。
这是一份备战2024高考一轮复习数学(理) 课时验收评价(五十八) 双曲线,共5页。试卷主要包含了点全面广强基训练,重点难点培优训练等内容,欢迎下载使用。
这是一份备战2024高考一轮复习数学(理) 课时验收评价(三十七) 数列求和,共5页。试卷主要包含了点全面广强基训练,重点难点培优训练等内容,欢迎下载使用。