备战2024高考一轮复习数学(理) 第十一章 计数原理与概率、随机变量及其分布 第一节 两个基本计数原理与排列组合课件PPT
展开3.排列数、组合数的定义、公式、性质
2.从4本不同的课外读物中,买3本送给3名同学,每人各1本,则不同的送法种数是 ( )A.12 B.24 C.64 D.81答案:B
3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有______种.答案:604.若某单位要邀请10位教师中的6位参加一个会议,其中甲、乙两位教师不能同时参加,则邀请的不同方法有______种.答案:1405.某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法种数为________.答案:30
3.在所有的两位数中,个位数字大于十位数字的两位数共有 ( )A.50个 B.45个 C.36个 D.35个解析:由题意,知十位上的数字可以是1,2,3,4,5,6,7,8,共8类,在每一类中满足题目要求的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理,知符合题意的两位数共有8+7+6+5+4+3+2+1=36(个). 答案:C
[一“点”就过]分类加法计数原理的分类标准的选择(1)应抓住题目中的关键词、关键元素、关键位置.根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复,但也不能有遗漏.
2.某学校举行校庆文艺晚会,已知节目单中共有七个节目,为了活跃现场气氛,主办方特地邀请了三位老校友演唱经典歌曲,并要将这三个不同节目添入节目单,而不改变原来的节目顺序,则不同的安排方式有______种.
3.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________(用数字作答).
[一“点”就过]利用分步乘法计数原理解题的策略(1)明确题目中的“完成这件事”是什么,确定完成这件事需要几个步骤,且每步都是独立的.(2)将这件事划分成几个步骤来完成,各步骤之间有一定的连续性,只有当所有步骤都完成了,整个事件才算完成.
[方法技巧]对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.
[答案] (1)D (2)D
[方法技巧]组合问题常有以下两类题型变化(1)“含有”或“不含有”问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”问题:用直接法和间接法都可以求解,通常用直接法,分类复杂时,考虑逆向思维,用间接法处理.
[答案] (1)A (2)180
[方法技巧]排列、组合的混合问题是从几类元素中取出符合题意的几个元素,再安排到一定位置上的问题.其基本的解题步骤为:第一步:选,根据要求先选出符合要求的元素.第二步:排,把选出的元素按照要求进行排列.第三步:乘,根据分步乘法计数原理求解不同的排列种数,得到结果.均匀分组与不均匀分组、无序分组与有序分组是组合问题的常见题型.解决此类问题的关键是正确判断分组是均匀分组还是不均匀分组,无序均匀分组要除以均匀分组数的阶乘数,还要充分考虑到是否与顺序有关,有序分组要在无序分组的基础上乘以分组数的阶乘数.
“课时验收评价” 见“课时验收评价” (六十六) (单击进入电子文档)
2024版新教材高考数学全程一轮总复习第十章计数原理概率随机变量及其分布第一节计数原理与排列组合课件: 这是一份2024版新教材高考数学全程一轮总复习第十章计数原理概率随机变量及其分布第一节计数原理与排列组合课件,共48页。PPT课件主要包含了必备知识·夯实双基,关键能力·题型突破,m+n,m×n,一定顺序,作为一组,答案B,答案C,答案A等内容,欢迎下载使用。
备战2024高考一轮复习数学(理) 第十一章 计数原理与概率、随机变量及其分布 第五节 离散型随机变量的分布列及均值、方差课件PPT: 这是一份备战2024高考一轮复习数学(理) 第十一章 计数原理与概率、随机变量及其分布 第五节 离散型随机变量的分布列及均值、方差课件PPT,共49页。PPT课件主要包含了X服从两点分布,PX=1,数学期望,平均水平,平均偏离程度,标准差,aEX+b,a2DX,答案B,答案D等内容,欢迎下载使用。
备战2024高考一轮复习数学(理) 第十一章 计数原理与概率、随机变量及其分布 第四节 古典概型与几何概型课件PPT: 这是一份备战2024高考一轮复习数学(理) 第十一章 计数原理与概率、随机变量及其分布 第四节 古典概型与几何概型课件PPT,共48页。PPT课件主要包含了基本事件,有限的,可能性,等可能的,长度面积或体积,答案D,答案A,答案C,答案B等内容,欢迎下载使用。